
1

OutlineOutline

• Announcements:
– Homework I on web, due Fri., 5PM by e-mail
– Small error on homework
– Wed and Fri in ACCEL, Attendance required
– LAST DAY TO ADD/DROP!

• A Closer look at compilation
• What do I mean by “formal methods?”
• Specification
• Verification
• Practical formal methods

A Closer Look at CompilationA Closer Look at Compilation

• Building an executable requires 2 steps
– Compile--turn source code into low-level instructions

(object files)
• cc -w or “compile”

– Link--merge object files to form executable
• cc or “link”

A Closer Look at CompilationA Closer Look at Compilation

• Why would you ever use -w?
– Compilation is slow, linking is fast
– Suppose program is split into several files: main.c,

io.c, matrix.c
• Suppose we know the code in io.c and matrix.c work,

but we’re unsure of main.c
• cc -w *.c --creates main.o, io.o, matrix.o
• If we make a change in main.c, we can just compile it:

– cc-w main.c; cc *.o -omyapp

2

A Closer Look at CompilationA Closer Look at Compilation

• What about simple programs?
– cc -c firsttry.c produces firsttry.o
– What’s missing?

• We called “printf” to write to the screen
• The low-level instructions for printf are in a library

somewhere on your system.
• The linker gets those instructions and merges them

with firsttry.o

Formal MethodsFormal Methods

• As scientist we should be accustomed to
precision
– You must be able to describe the exact procedures

used in your experiment/analysis
– This is essential for reproducibility

• Reproducibility is equally important for
computational work
– Formal methods are a collection of techniques to

describe precisely what a program should do

Importance of Formalism inImportance of Formalism in
Scientific Software DevelopmentScientific Software Development
• A Scary Story:

– You write a program to implement algorithm X (you think)
– But, you actually implemented algorithm Y
– It is possible that two similar algorithms can produce very

different results (think chaos)
– You publish a paper describing your results (from running

algorithm Y), but in your methods you describe algorithm X
– The results are spectacular. You get your Ph.D. and a tenure

track job.
– However, just as you’re being reviewed for tenure, a grad student

in Afghanistan tries to repeat your experiments. Based on your
paper, she correctly implements algorithm X and gets very
different results.

– Your tenure is denied, no one will hire you, you walk around
campus with a “Will code for food” sign while the Afghani student
takes your position.

3

Formal MethodsFormal Methods

• Formal methods can be divided into two steps:
– Specification: a precise statement of what a program

(or subroutine) should do
– Verification: a demonstration that the actual

program satisfies the specification

• Math/Logic is the preferred method
– rigorous
– Precise

• But, English has its place
– Some would say, English is not formal
– My view: a good English spec. is better than nothing

at all
• You may actually write a spec in English
• Can include in comments

Specification MethodsSpecification Methods

• Describe the properties of the inputs and
outputs
– Data structures
– Precision/type
– Assumptions: sorted? symmetric? ≠0?

• Describe what will happen if assumptions
violated
– return error
– return null value, NaN, -999
– throw exception

Keys to SpecificationKeys to Specification

4

Formal SpecificationFormal Specification

•
– I=formal statement about input
– O=formal statement about output
– P=program
– Says that if input conditions are given to program P,

then the output conditions will be true

• This just says what a program should do, but
says nothing about how it will get done
– No details of P

• A specification can take many forms:
– English: “Given a sorted array of integers, the

routine will return the location of k in the array,
where k is provided by the user”

– Logic:

SpecificationSpecification

• English: Given real-valued parameters a, b,
and c, the routine returns the roots of the
quadratic equation

• Math:

SpecificationSpecification

5

• Demonstrate (prove) that your program
satisfies specification

• Keep the specification in mind as you develop
your code
– Lines or sections of code will establish different parts

of the specification
– Sometimes, it is easier to refine I (strengthen

assumptions) than to satisfy it

VerificationVerification

• There are rigorous approaches to verification
– Special types of logic that describe what code does

• Theoreticians have built “theorem provers”
that can be used to automate this process
– Theorem: Specification
– Proof: Logical equivalent of specification should show

that specification is true

Formal VerificationFormal Verification

• This is a really cool idea
– See NuPRL web sit

– http://www.cs.cornell.edu/Info/Projects/Nu
Prl/Intro/intro.html

• Not practical for most scientific programs
• Essential for software controlling costly or

important actions
– Airplanes
– Space probes
– Stock trades

Formal VerificationFormal Verification

6

• Typing is very simple form of verification
• In a strongly-typed language (Java)

– X=Y is allowed only if X and Y are the same type
– This is very helpful, but doesn’t come close to

guaranteeing that your program is correct:
void BadFunction(int[] big){

int[] small=new int[5];
for(int j=0;j<big.length;j++){

small[j]=2*big[j];
}

}

Free VerificationFree Verification

• Ideally we would all conduct rigorous
specification/verification of our programs

• But who are we kidding?
• In the real world,

– 1) Write a specification as formally as you can, and
put an English approximation in the comments

– 2) As you write your code, prove to yourself that
you are actually solving the problem

• You should include comments like “this line only works
if X is true” and “this line makes sure X is true”

Practical Formal MethodsPractical Formal Methods

• A standard technique in formal methods
is to search for invariant properties
– An invariant is a property that doesn’t

change
– If a line of code violates the invariant, next

one should reestablish it

A Useful TechniqueA Useful Technique

7

Specifying the ModelSpecifying the Model
ProblemProblem

• English: Given initial distribution of C
defined on an evenly spaced grid of m
points starting at 0 and ending at L
(etc. for u, k and reaction), a time step
dt, and an ending time T, RAD1d finds
an approximate solution fo PDE at time
T

Specifying RAD1dSpecifying RAD1d

• We know that C provided by user is an
approximate solution at time 0. This suggests
an invariant:
– C is a solution for PDE a current time t

• We can use the invariant to help develop the
code
Get C at time 0
t=0---establishes invariant at start of loop
while (t<T){

Build A, b
Solve AC=b--invariant violated, C is sol’n at t+dt
t=t+dt --invariant reestablished

}

