
1

Software DesignSoftware Design

Designer clothes?

OutlineOutline

• Announcements:
– Homework I on web, due Wed., 5PM by e-mail
– Starting Friday, Wed. and Fri. lectures will meet in

ACCEL “Green” Room in Carpenter

• Updated Syllabus
• The Design process
• Importance of good design
• Design techniques

Updated SyllabusUpdated Syllabus

1. Intro, Philosophy, Model problem
2. Design of algorithms and responsible coding
4. Editing, compiling: UNIX vs. IDE, intro to architectures
3. Formal & Informal Specification
5. Language issues: C, Fortran, Java, MATLAB
7. Debugging: UNIX db vs. IDE
8. Testing for correctness
6. Building with Make
9. Improving performance--profiling, tuning
11. Platform issues & how to spend your advisor's money
10. Software management, source code control
12. Trends for the future

2

General DevelopmentGeneral Development

• Development is the process by which things
get made (e.g. engineering)

• The development process is different
depending on the product
– driven by cost, complexity, and reliability

considerations

General DevelopmentGeneral Development

• Building a house
– architects/engineers create detailed blueprints
– general contractor organizes groups of workers for specific

tasks
• foundation
• walls, windows & doors
• electrical
• plumbing
• interior finishing

– Good design is important because it is costly to rebuild
(materials, time)

– Good management is important to avoid having workers
sitting idle

General DevelopmentGeneral Development

• Making a movie
– screenwriter creates script
– director plans shoots from the script

• choose locations, organize personnel, timeline

– movie is filmed
– movie is edited and released

• Movies require lots of (expensive) people, so it
is critical that time is used efficiently

3

Development Process IDevelopment Process I

1. Create a text file containing commands in
some language

2. Pass the file to the compiler
3. Run the executable

Development Process IIDevelopment Process II

1. Design: What will the program (or modification) do?
How will it work?

2. Specification--formal statements of what code will do
3. Prototyping--a “proof-of-concept” version. Simple

version written in an interpreted language (Matlab,
Python)

4. Implementation: write the code
5. Build: Get it to compile and run

a) Debug I: find and fix syntax errors
b) Debug II: find and fix semantic errors (testing)

6. Improve performance through tuning or re-design

Development Process IIDevelopment Process II
(typical)(typical)

1. Start writing code, design=rewrite
2. Compile
3. Debug, debug, debug

4

Importance of Design inImportance of Design in
Scientific Software DevelopmentScientific Software Development

• Despite our lowly status, we are paid for
scientific results, not time spent hacking

$15,625/hr$30million for
24x80 hr weeks

Arnold

$31.25/hr$60K/yrassist. prof.

$15.62/hr$32K/yrpost. doc.

$8.33/hr$15K/yeargrad

$0-7.29/hr0-$3500 (summer)undergrad

HourlyBase SalaryPosition

Importance of Design inImportance of Design in
Scientific Software DevelopmentScientific Software Development

• Even though our wages are low, good design
is important for scientific programming
– Reduces time spent debugging
– Makes code easier to use (more people citing your

work)
– Makes code easier to extend (better luck next time)
– Makes code easier to describe to colleagues

Definition of DesignDefinition of Design

• The design process will lead to a description of
what your program will do and how it is
organized.

• Some important questions to answer
– How will you get data in and out of your program?
– What tasks must your program perform?
– How will data flow through your program?

5

Good DesignGood Design

• An important characteristic of good design is
modularity
– Code should be divided into simple pieces

(subroutines, method), each solving a specific task
– Related pieces should be grouped together in a

single file (module, class)

• Object oriented languages (Java, C++) are
inherently modular

Design TechniquesDesign Techniques

• Flow charts
– Visual representation of your program
– This should be at a high-level

• Universal Modeling Language (UML)
– Industry-standard for design and management of

object oriented development
– Specifies several diagram types--each one takes a

different view of a project

Stealing from UMLStealing from UML

• Industrial UML-systems are overkill for most
scientific problems, but we can borrow some
useful views of our programs
– Class Diagram--describe an object’s fields (data) and

methods (functions)
– State Diagram--describe how an object’s state (data)

changes

6

Stealing from UMLStealing from UML

• Class Diagrams
– Box with three regions: name, fields (data), methods

(subroutines)

Stealing from UMLStealing from UML

• State Diagrams
– Start state (•), named states (ovals), end state (ã)
– Connect with arrows
– Diagrams can branch when conditions are satisfied

(if-then-else)

Soaking Normal Rinsing Spinning

Delicate

Check
Settings

Set to
delicate

N
o
rm

a
l

Iterative RefinementIterative Refinement

• Iterative refinement is an important design
technique
– Takes a top-down view
– Enforces modularity

• Iterative refinement is a 3 step process
1. Describe--what will your program/subroutine do?
2. Divide--what are the essential tasks?
3. Repeat--subdivide tasks if possible.

7

Iterative RefinementIterative Refinement

I. Do Laundry
A. Wash
B. Dry
C. Fold

A. Wash
1. Get clothes
2. Place in washer
3. Configure washer
4. Start

B. Dry
1. Move from washer to dryer
2. Configure dryer
3. Start

C. Fold
1. Remove from dryer
2. If (shirt) then

a. Fold shirt
else

b. Fold pants

Do LaundryDo Laundry

Main Point of DesignMain Point of Design

– Think before
you code!

8

Numerical SolutionNumerical Solution

• We start with an initial distribution of C over the interval
[0 1]

• Divide [0 1] into discrete points separated by dx

• C(x,t+dt) will depend on C(x), C(x-dx), & C(x+dx)
• I’ve placed a full derivation of the model problem on the

web site which I will go through now

x

C(x,t)

C(x,t+dt)

Designing RAD1Designing RAD1

1. Get C0, u, k, dt,t, T, m, L (dx=L/(m-1)) from user
2. Build matrix A using k, dt, dx
3. Build RHS vector b using u, k, and reaction data
4. Solve A*C=b for C
5. t=t+dt
6. If(t<T)

a) Copy C=C0
b) Change u and k if needed
c) Repeat 2-6

Else
d) Output C and quit

