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Our model problem is based on the 1D-Advection-Reaction-Diffusion
Equation:
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total change = advection + diffusion + reaction

In this equation, C(x, t) represents the concentration of something at point x
and time t. Three functions u(x, t), k(x, t), and r(C, x, t) specify the velocity
field, diffusivity field, and the change due to local processes (birth, death,
chemistry, etc.), respectively. We want to compute the distribution of C at
some point in the future, starting from an initial distribution C(x, 0).

To derive our numerical scheme we need to first carry the derivative op-
ertor through the diffusion term:
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Thus, if k is a function of x, then a diffusion gradient will produce an addi-
tional advective component.

To solve this problem on a computer, we place m evenly spaced points
on our domain. If our domain runs from x = 0 to x = L, then the distance
between the points is dx = L/(m−1), and the points will be located at 0, dx,
2*dx, ...,L. We can divide the time span we want to simulate into intervals
separated by dt in a similar manner. To (hopefully) simplify the notation,
we will represent the time level as a superscript and the spatial position as
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a subscript, e.g. C(x, t) = Ct
x. Since we only have information about C

at m discrete points, we will have to approximate the ∂
∂x

terms by taking
differences at adjacent points and dividing by dx. Doing this, and treating
the time derivative in the same way yields:
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where ũ replaces the advection term. For a single ∂
∂x

operation, we must
choose whether to take the difference on the left or right. Unfortunately, the
sign of u must agree: if u > 0 then we must look to the right (upwind).
One way around this is to compute both the left and right differences and
average them. This will work with any u and was used to compute both
∂C
∂x

and ∂k
∂x

. Note that we can choose the time level at which we want to
take the spatial derivatives. If we choose time level t, then our method is
explicit, if we choose level t+dt then our method is implicit. This distinction
has important consequences on the numerical properties and computational
efficiency of a PDE solver. Explicit methods can be computed quickly, but
dt must be small. Implicit methods require more work (we must solve a
system of linear equations), but we can use a larger time step. For several
reasons beyond the scope of this course, I chose to take the derivative in the
advection term at time t and the derivative in the diffusion term at time
t + dt. Thus, the scheme we will use is semi-explicit.

Finishing our derivation requires some simple algebra. First, multiply
throught by dt:
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Then, we introduce two variables λ = ũdt/dx and σ = kxdt/dx2:
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Note that both λ and σ may depend on x and/or time. We complete the
derivation by moving all of the t + dt terms to the left:

−σCt+dt
x+dx+(1+2σ)Ct+dt

x −σCt+dt
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x+0.5∗λ(Ct
x+dx−Ct
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This scheme would work but it is rather simplistic. I would like to make
one change involving the advection operator. Rather than our simple treat-
ment (known as the “forward Euler method”), I would like to use a scheme
known as “Lax-Wendroff.” Our original method approximated the derivative
by fitting a line between the intervals to the left and right. Lax-Wendroff
adds a small correction that is equivalent to fitting a parabola to the data
at x and at the points to the left and right. Replacing our original advective
scheme with Lax-Wendroff yields:

−σCt+dt
x+dx + (1 + 2σ)Ct+dt

x − σCt+dt
x−dx = (1)

Ct
x +0.5 ∗λ(Ct

x+dx−Ct
x−dx) + 0.5 ∗λ2(Ct

x+dx− 2 ∗Ct
x +Ct

x−dx) + r(Ct
x, x, t)dt.

Equation 1 describes how the value of Ct+dt
x depends on previous values

of C. Unfortunately, because we treated the diffusion term implicitly, Ct+dt
x

depends on unkown information, namely, the neighboring values at time
t+dt. We have an identical set of equations for the other m−1 points in our
domain. If you count up the number of unknowns (all of the Ct+dt terms),
you’ll find that we have m equations (one for each point in the domain) but
m+2 unkowns. The two extra unknowns, Ct+dt

0−dx and Ct+dt
L+dx, occur next to the

first and last points. In order to close the system, we need to eliminate these
unkowns by providing boundary conditions. There are a number of ways we
could do this. In my opinion, the easiest and most interesting boundary
conditions are called “periodic boundary conditions.” Periodic boundary
conditions assume the information flowing out of the left side of the domain
returns on the right, and vice-versa (rather than modeling on a fixed segment,
we’re modeling on a circle). Using these conditions, our two extra unkowns,
Ct+dt

0−dx and Ct+dt
L+dx, become Ct+dt

L and Ct+dt
0 , respectively.
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Now that we have m equations and m unkowns we need a way to solve
for the unkowns. Because the equations are linear, we can pose our system of
equations as a matrix problem, and use a variety of algorithms from numerical
linear algebra to solve our system. The matrix problem looks like

Ac = b

where c is a length-m vector containing each of the Ct+dt
x terms, b is a length-

m vector containing the value of advective and reactive equations at each
point (the right-hand side in 1), and A is an m-by-m matrix. Each row of A
represents a linear equation, and the jth row looks like

aj,1C
t+dt
0 + aj,2C

t+dt
dx + aj,3C

t+dt
2∗dx + ... + aj,m−1C

t+dt
(m−2)∗dx + aj,mCt+dt

L = f(C(t))

Equation 1 says that Ct+dt
x depends only on neigboring points. Thus, only

aj,j−1, aj,j, and aj,j+1 will be non-zero (assuming j is not 0 or m). This
implies that most of A is tridiagonal : only values lying above, below, and
on the main diagonal are non-zero. However, the periodic BC’s ensure the
A is not perfectly tri-diagonal. Because Ct+dt

0 depends on Ct+dt
L , a1m is non

zero. Similarly, Ct+dt
L depends on Ct+dt

0 , so am1 is non zero. We now have
the structure of A, but what are its values? From equation 1, we get

A(1, :) =
[

(1 + 2σ) −σ ... −σ
]

A(j, :) =
[

... −σ (1 + 2σ) −σ ...
]

A(m, :) =
[
−σ ... −σ (1 + 2σ)

]
We can now describe, in vague terms, how to solve our PDE. Assume that

we are given an array containing the values of C at the grid points at time 0
and that u and k are also described at these points. Using this data and dt
and dx, we can construct A and the right-hand side vector b. We then select
from several algorithms for solving linear systems to get the values of C at
time dt. We use update b using the new values of C (and A if k changes with
time) and repeat. We iterate forward in this manner until t > some specified
time.
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