
1

CS 403: Development of ScientificCS 403: Development of Scientific
Computing ProgramsComputing Programs

Andrew Pershing
3134 Snee Hall
ajp9@cornell.edu
255-5552

OutlineOutline

• Course Description
• Details
• Policies
• Intro to CIS Tools Curriculum
• Role of Computing in Science and

Engineering
• Basic Concepts
• Model problem

Course GoalsCourse Goals

• This course will:
– Examine the process of scientific software

development
– Discuss tools, both necessary and useful,

for producing scientific software
– Explore techniques for improving the

efficiency of computer-based research

2

SyllabusSyllabus

1. Intro, Philosophy, Model problem
2. Design of algorithms and responsible coding
3. Formal & Informal Specification
4. Editing, compiling: UNIX vs. IDE, intro to architectures
5. Language issues: C, Fortran, Java, MATLAB
6. Building with Make
7. Debugging: UNIX db vs. IDE
8. Testing for correctness
9. Improving performance--profiling, tuning
10. Software management, source code control
11. Platform issues & how to spend your advisor's money
12. Trends for the future

Course Course UngoalsUngoals

• This course will NOT:
– Teach you how to program (try CS 100m)

• You should be comfortable writing programs in
some language (C, Matlab, FORTRAN, Java,…)

– Teach you numerical methods (CS 32X,
62X)

– Teach you UNIX
• we will discuss some UNIX tools (Windows,too),

but not general features of the UNIX OS nor how
to write scripts

• http://www.cs.cornell.edu/Courses/cs403/2002sp
– Contains syllabus, lecture notes, examples,

homework

• Office Hours
– Tuesday & Wednesday, 11-1 in 3134 Snee (or by

appointment)

• Registration:
– get my signature or CS Undergrad office (303

Upson)
– # 441-198
– S/U only, 1 credit
– Last day to add/drop: Monday, Feb. 25!

Course Business:Course Business:

3

RequirementsRequirements

• No official text
• Need to find a computer where you can

– 1. edit text and do e-mail
– 2. compile code (mostly C)
– 3. Check out ACCEL Facility in Carpenter

Library, departmental labs

• 4 assignments: 1 per week, due Wednesday,
5PM by e-mail

• If you complete each assignment on time and
demonstrate a basic command of the material,
you will pass!

• Course policies are strict:
– A direct consequence of the “mini-course” format

• This course operates as a contract between
you and me

Course PoliciesCourse Policies

• I agree to:
– Begin and end lecture on time
– Put lecture notes on website before lecture
– Be available during office hours
– Make the assignments of reasonable length

(~2 hours) focusing on material from
lectures

The ContractThe Contract

4

• By registering for the course, you agree to:
– Arrive on time
– Participate in the course by asking questions and

coming to office hours
– Turn in your assignments on time

• Late work will not be accepted and will jeopardize you
chance of passing!

• The only exceptions are for documented, university-
sanctioned reasons such as severe illness or by prior
arrangement made w/ me 3 days before (includes
religious holidays, sports, etc.)

The ContractThe Contract

– Cornell University has recognized that computing
and information science has emerged as a key
enabling discipline vital to nearly all of its scholarly
and scientific pursuits.

– The Faculty of Computing and Information is
founded on the recognition that the ideas and
technology of computing and information science
are relevant to every academic discipline.

– We are united in the need to bring together a core
of faculty in this field from across the traditional
colleges.

CIS and FCICIS and FCI

• CS 403 (should be CIS 403) is the third
in a series of courses designed to teach
applied scientific computing

CIS Tools CurriculumCIS Tools Curriculum

CS

Science &
Engineering

Scientific
computing

p
u
re

ap
p
lied

5

CIS Tools CurriculumCIS Tools Curriculum

• “Pure” Scientific Computing
– Focus is on algorithms for general problems such as

optimization, linear systems, differential equations
– Concerned with accuracy, stability, and efficiency of

these algorithms

• “Applied” Scientific Computing
– How to apply general algorithms to solve scientific

problems
– Algorithms are “black boxes” that we string together

to get our work done

CIS Tools CurriculumCIS Tools Curriculum

• Fall: MATLAB
– 401: the basics
– 402: visualization (starts October 15)

• Spring: General tools
– 403: Developing scientific computer programs

(compilers, debuggers, managing large projects)
– 404: Numerical libraries

Key QuestionsKey Questions

• There are several questions we will try to
address in the next 4 weeks
– How do scientists use computers? Do scientists have

unique requirements?
– What processes are common to the development of

scientific software?
– As scientists, we’re paid for scientific results, not

time spent hacking. How can we make the
development process more efficient?

– What tools are available to help us? How do they
work and how do they differ across platforms?

6

Applied Scientific ComputingApplied Scientific Computing

• Emphasis is less on developing new algorithms,
rather, it is on obtaining new scientific results.
– We are either running a simulation, or analyzing data

(perhaps from a simulation).
– We need to be able to develop new code or modify existing

code to fit our needs
– We should make this process easier for ourselves or

colleagues the next time.
– We need to get the code to run on our system.
– We will need to debug the code and verify that it is solving

the correct problem.
– We will need to work within (or oversee) a group of

programmers

A Unique RequirementA Unique Requirement

• Scientific results must be reproducable
– This applies to computational results, too
– We must accurately describe

• Inputs to our programs
• Details of our code--algorithms, parameter values

Model ProblemModel Problem

• Since we’re looking at the process of
scientific software development, we’ll focus
on a single example problem

• We will work out the design and specification
of a program to solve this problem

• We will debug and test it
• We will improve its performance

7

Model Problem: Advection-Model Problem: Advection-
Diffusion-Reaction in 1DDiffusion-Reaction in 1D

• Related equations occur in many fields
– Fluid flow in atmosphere, ocean, lakes, universe
– Biological development
– Chemistry
– Ecology

RADRAD

• This is not a math class, nor is it a course on
numerical methods.

• Focus on the big picture (what we’re doing, what the
components are) rather than on the details

Total
Change Advection Diffusion

Local
Change

Or Growth
= + +

RADRAD

• u and k can be functions of x and t
• Means we need to carry out d/dx in diffusion

term:

• Can group dk/dx with u in advection term:

8

Numerical SolutionNumerical Solution

• We start with an initial distribution of C over
the interval [0 1]

• Divide [0 1] into discrete points separated by
dx

• C(x,t+dt) will depend on C(x), C(x-dx), &
C(x+dx)

x

C(x,t)

C(x,t+dt)

Numerical SolutionNumerical Solution

• replace partial derivatives with
differences (k=constant):

• The solution of C(x,t+dt) depends on
neighboring points

Numerical SolutionNumerical Solution

• We have a system of n linear equations
with n unknowns (C1, C2,…, Cn)

• In linear algebra, we write this as a
matrix problem:
– A*Ct+1=ft

• There are many ways to solve these
problems

9

Numerical SolutionNumerical Solution

• Each Cx will have a row in matrix A
• All rows are the same except for first

and last
– We need to specify what happens at end

points
– Boundary conditions are a big problem
– We’ll use periodic BC’s

• C(0)=C(1), so first and last rows are:

