CS 402: Scientific Visualization with MATLAB

Andrew Pershing
3134 Snee Hall
ajp9@cornell.edu
255-5552

Outline

• Course Description
• Details
• Policies
• Intro to CIS Tools Curriculum
• Role of Visualization in Science and Engineering
• Basic Concepts

Course Goals

• This course will:
 – Teach you how to visualize data in Matlab
 – Explore the paradigms and algorithms underlying Matlab’s graphics system
 – Identify interesting concepts and useful techniques in scientific visualization

By the end of the course, you should have the skills necessary to create and customize visualizations of your data
Syllabus

1. Course Intro and Basic Concepts
2. Intro to Handle Graphics and 1D primitives
3. Figures and Axes, Printing and Saving
4. More about plot, specialized 1D functions
5. 2D routines in 2D: properties and options
6. 2D routines in 3D: surfaces
7. Adding a dimension with color
Other topics:
- lighting, transparency, volumetric visualization, graphical user interfaces (GUI’s), movies

Course Ungoals

- This course will NOT:
 - Get you a job with Pixar (try CS 417)
 - Will talk a little about computer graphics, but focus will be on producing images of scientific data
 - Teach you Matlab programming (try CS 401)
 - You should be comfortable writing programs in Matlab
 - Indexing, iteration, functions
 - Read through Hanselman & Littlefield or Matlab help documentation for more info
 - Cover all MATLAB graphics routines

Course Business:

 - Contains syllabus, lecture notes, examples, homework
- Office Hours
 - Tuesday & Wednesday 3-4 in 3134 Snee (or by appointment)
- Registration:
 - get my signature or CS Undergrad office (303 Upson)
 - S/U only, 1 credit
 - Last day to add/drop: Monday, October 6
Requirements

- Reference Text: Hanselman and Littlefield *Mastering Matlab 6*
 - No required reading, but this is a great reference
- Find a computer with MATLAB (v6 preferred, but v5 is OK):
 - Check departmental labs--good site licensing for Cornell machines
 - ACCEL in Carpenter Hall

Course Policies

- 4 assignments: 1 per week, due Wednesday, 5PM by e-mail
- If you complete each assignment on time and demonstrate a basic command of the material, you will pass!
- Course policies are strict:
 - A direct consequence of the "mini-course" format
- This course operates as a contract between you and me

The Contract

- I agree to:
 - Begin and end lecture on time
 - Put lecture notes on website prior to lecture
 - Be available during office hours
 - Make the assignments of reasonable length (2-4 hours) focusing on material from lectures
The Contract

- By registering for the course, you agree to:
 - Arrive on time
 - Participate in the course by asking questions and coming to office hours
 - Turn in your assignments on time
 - Late work will not be accepted and will jeopardize your chance of passing!
 - The only exceptions are for documented, university-sanctioned reasons such as severe illness or by prior arrangement made w/ me 3 days before (includes religious holidays, sports, etc.)

CIS and FCI

- Cornell University has recognized that computing and information science has emerged as a key enabling discipline vital to nearly all of its scholarly and scientific pursuits.
- The Faculty of Computing and Information is founded on the recognition that the ideas and technology of computing and information science are relevant to every academic discipline.
- We are united in the need to bring together a core of faculty in this field from across the traditional colleges.

CIS Tools Curriculum

- CS 402 (should be CIS 402) is the second in a series of courses designed to teach applied scientific computing
CIS Tools Curriculum

- "Pure" Scientific Computing
 - Focus is on algorithms for general problems such as optimization, linear systems, differential equations
 - Concerned with accuracy, stability, and efficiency of these algorithms
- "Applied" Scientific Computing
 - How to apply general algorithms to solve scientific problems
 - Algorithms are "black boxes" that we string together to get our work done

Role of Visualization in Science and Engineering

- A significant amount of a scientist's time is spent creating visual representations of scientific data or ideas
- We want to understand
 - why visualization is important?
 - what is required to make an effective visualization?
 - how to do this on a computer (in Matlab)?

A Brief History of Visualization

- Primates are visual animals
 - consequence of evolving in a complicated 3D environment (trees)
 - our sense of smell is bad (fresh vs. sour milk, but not one person from another)
A Brief History of Visualization

- Humans have been creating artificial representations of reality (pictures) for thousands of years
 - cave paintings
 - maps
 - diagrams
- Pictographic languages were replaced by alphabets (a few small pieces put together in many combinations vs. a new piece for each word)
- But, graphics are still important (a picture is worth 1,000 words)

A Brief History of Visualization

- Visualization has played a critical role in science
 - Ancient geometers invented special tools for drawing accurate shapes
 - maps of geologic data suggested S. America and Africa were connected
 - Pauling built models of alpha-helix, Watson & Crick, DNA
 - Photography

Computer Graphics Revolution

- Intel brags about GHz, IBM brags about flops, but
- Graphics have made the computer industry
 - computer sales exploded with MacOS and Windows GUIs
 - proof that we are a visual rather than command-line species
 - industry now driven by web and games
 - Scientists have directly benefited from these developments
 - computers and graphics software are faster, cheaper, and easier to use
 - quality of output (electronic and print) is better
Scientific Visualization

- Humans are visual species, so creating a graphical representation of your result or ideas will make them easier to communicate.
- What do we mean by visualization?
 - graphical rather than pure text
 - should think of visualization as a model that may make assumptions
 - literal vs. figurative

Figurative Visualizations

Literal (“Classic”) Visualizations

![Figurative Visualizations Diagram](image1)

![Literal Visualizations Diagram](image2)
Scientific Visualization

- Goals:
 - communicate results--create an image that viewer will remember
 - represent results--accurate representation allows others to extrapolate from your data
 - attract attention--get people to read your paper/poster (advertising)

Visualization Criteria

- Hard to define a good visualization, but here are some thoughts:
 - Western languages read left-to-right, your axes should as well
 - the exception is palentology which has a right-left convention
 - but, orient vertically to plot vs. depth
 - Colors are great, but should be used carefully:
 - avoid mixing red and green
 - expensive to publish in color
 - not entirely quantitative
 - be aware of viewers common experience:
 - red=hot, blue=cold
 - land is green/yellow/brown, ice is white, water is blue

Why Matlab?

- There are lots of options for scientific graphics
 - Low-end packages (Excel)
 - simple, but limited
 - can’t program
 - High-end packages (AVS, OpenDX)
 - great output
 - unique interface (”nets”)
Why Matlab?

- Numerical Computing Environments (Matlab, S+, IDL)
 - easy to work with data
 - lots of canned features, but
 - can program and automate graphics
 - output is nearly as good as high-end
 - large user-base (CS100, other courses)

Programmed Plots

for j=1:4
 plot field j
 save to JPEG
end