
1

interpolation, color, & light

Outline

• Announcements
– HW II--due today, 5PM
– HW III on the web later today

• HW I: Issues
• Structured vs. Unstructured Meshes
• Working with unstructured meshes
• Interpolation
• colormaps
• lights

HW I

• No issues on the programs--most did well
– sample solutions are on the web

• No problems figuring out colors or finding
handles
– if you don’t understand a question, come find me!

• Only one person got 1 correct
– This was a bit of a trick question, but …
– since you have to go to the computer to do the

programming, you might as well try the problems

2

Interpolation & grids

• To plot with surfaces,
you need some kind
of mesh or grid:
– a mesh is a collection

of non-overlapping
polygons that fills a
region of space

– meshes can be
structured (all polygons
the same size and
shape) or unstructured

Regular Grids

• Meshes made from
quadrilaterals are
known as grids
– A regular grid has only

90° angles (rectangles)
and can be defined by
vectors x and y

– if x(j+1)-x(j) and
y(j+1)-y(j) are constant,
then the grid is uniformx(1) x(2) x(3) x(4) x(5)

y(6)

y(5)
y(4)

y(3)

y(2)

y(1)

Unstructured Grids

• If the cells are not rectangular, then the
grid is irregular or unstructured

• X and Y are now matrices:

3

Visualizing Grids

• Matlab’s core 2D functions want grids:
– pcolor
– contour
– surf
– mesh

The World is not Square

• Meshes of triangles
are common,
especially in finite
element modlling

• Triangular meshes
can also be
structured or
unstructured
– unstructured are more

common

• Matrices are rectangular, so it is hard to “fit” a
triangular mesh into a matrix

• Typically, triangular meshes require 3 arrays:
– vectors x and y contain the location of the vertices

(in no particular order)
– array tri defines how the vertices are connected

• Each row contains indexes the three vertices forming a
triangle

Triangular Meshes

tri=[1 4 2;
 2 4 3];

(x(3),y(3))

4

• Matlab’s trimesh is designed to plot z=t
f(x,y) on a triangular mesh
– trimesh(tri, x,y,z, {c});

• We can do the same thing with patch
(or surface)
– we may not be interested (or have) z and c
– this is mainly to illustrate the form of x, y, z,

and c data fields

Plotting Triangular Meshes

• h=patch(X,Y,C) creates polygons for
each column of X,Y, and C
– if our mesh has t triangles, X, Y, and C will

be 3-by-t
– X=[x(tri(:,1)), x(tri(:,2)), x(tri(:,3))]’;

• The mesh will be plotted in 2D view
with flat color: triangle colors will be
set by the first vertex (first row of C);

Patching Triangular Meshes

• Suppose we want to make it 3D with
elevation set by C
– patch(X,Y,C,C) will work (C used for both

elevation and color)

• or, if we’ve already plotted, with
h=patch(X,Y,C):
– set(h,’zdata’,C);view(3)

Patching Triangular Meshes

5

• If we want to plot with surfaces (or patches),
we need some kind of mesh

• But, we are rarely able to sample on a grid
– observations are often made at irregular intervals of

time and space due to sampling constraints or
equipment error (missing data)

• It is possible to calculate what the
observations should’ve been at locations
where we didn’t sample
– This is known as interpolation

Interpolation

Interpolation

• It is possible to calculate what the
observations should’ve been at locations
where we didn’t sample
– This implies that we know something about the

system we’re observing
– But, if we know so darn much, why bother

observing?
– The bottom line is that we are creating data and we

have no way of knowing whether or not we’ve done
this correctly

• All interpolations should be treated with suspicion

Formal Statement of Problem

• Inputs:
– Xobs= locations where we observed data (time,

space, etc., can also have Yobs, Zobs)
– Vobs= observed values: Vobs=f(Xobs)

• Remember, we don’t know the exact form of f, but we
may know something about its structure

– X=locations where we would like to know the values

• Then,
– V=INTERPMETHOD(Xobs, Vobs, X)
– Ideally, we have enough observations and know

enough about f so that INTERPMETHOD ≈ f

6

Linear Interpolation

• Linear interpolation is
the simplest form of
interpolation (other
than picking a constant)
– If we have two

observations, we can fit a
line between them and
use the equation of the
line to determine v

– linear interpolation is
used implicitly when
plotting with lines or
using interpolated
shading

xXobs(1) Xobs(2)

Vobs(2)

Vobs(1)

V

Linear Interpolation in
Matlab

• Matlab’s interpolation routines use
linear interpolation by default
– V=interp1(Xobs, Vobs, X)
– V=interp2(Xobs, Yobs, Vobs, X, Y)

• Xobs, and Yobs must define a grid (i.e. same
form as inputs for pcolor or surface)

• interp3, interpN work for higher-dimensional data

– V=griddata(Xobs, Yobs, Vobs, X, Y)
• observations need not be gridded
• uses Delaunay triangulation

Higher-order Interpolation

• Matlab can also interpolate using
cubic functions or splines
– v=interp1(xobs, vobs, x, ‘spline’);
– the results are smoother, but potentially

very wrong

7

Objective Analysis and
Kriging

• Matlab’s default
interpolation schemes
are simple, but stupid

• Kriging (a.k.a objective
analysis) is a statistical
interpolation technique
– requires you to know (or

guess) the structure of
your data’s spatial
variancedistance

va
ri
an

ce

(d
is

si
m

ila
ri
ty

)

• In kriging, Error=f(distance)
– Assumes your knowledge about v declines as you

move away from your observations
– Can often determine error function from your

observations

• v(j)=w1*vobs(1)+w2*vobs(2)+…+wn*vobs(n)
– The v’s are weighted means of the observations, the

weights are determined by the distance from v(j)
according to the error function

– In addition to v, we can also get an estimate of the
interpolation error

Kriging

Kriging in Matlab

• Kriging is computationally simple, but
there are some statistical
condiderations
– <RECOMMEND BOOK>

• Matlab does not have a built-in kriging
function (that I know of)
– http://globec.whoi.edu/software/kriging/eas

y_krig/easy_krig.html
– other software exists

8

Colormaps

• Matlab colormaps are
m-by-3 matrices,
where each row is an
RGB vector

• When a color
property (face or
edge) is set to flat or
interp, Matlab will
determine the color
using Cdata, Clim,
and the colormapcdata

Clim(1) Clim(2)

Colormaps

• Built in colormaps (help graph3d)
– map=copper(N);--gets copper colormap with N rows
– map=colormap--gets current colormap (default is

jet)
– colormap(map);--sets colormap to map

• map could be a built-in colormap (copper)

• Colormap is a property of the figure, not the
axes
– This means that we can have only one colormap per

figure

Creating New Colormaps

• Matlab colormaps are usually adequate,
but will need to create your own if:
– You need more than one map/figure
– You don’t like Matlab’s

9

Creating New Colormaps

• Simplest approach is modify Matlab’s
– map=colormap(gray);map=flipud(map);

• map will go from black to white rather than white to
black

– brighten lets you “brighten” or “darken” current
colormap

• Create your own with interp1
– v=[1 3 4]’; col=[0.5 0.5 0.5; .75 0 0; 1 1 0];
– map=interp1(v,col,linspace(1,4,64)’, ‘cubic’);

Multiple Colormaps

• Working with
multiple colormaps
gets very
complicated
– requires lots of handle

graphics work

• Tips & Things to
remember
– Single Clim-space, so

pick something simple
[0 1],[-2 1]

– Transform actual clims
to this space

 0 0.5 1

Data 1 Data 2

Example: Gulf of Maine
Bathymetry

• Today, I’ll start leading
you through the
process of creating my
Gulf of Maine
visualizations

• We’ll start with the
bathymetry and add
the temp (blue stuff)
next week

• This figure has two
surfaces and uses 3
colormaps and two
light sources

10

Lighting

• With the colors
used, it is
impossible to see
features in the Gulf
of Maine

• Matlab allows you
to add light
sources
– Reflections can

enhance 3D
perspective

Lighting

• Lighting is tough & involves a lot of trial and
error
– 1. Make sure your surface can be lit:

• Lighting phong (or gourard or flat) sets the
‘facelighting’ property of your surface

• It will now reflect light in a “natural” way
• Setting backfacelighting to lit is also good

– 2. Add a light
• L=light(light options) creates a light object

– Control its position, color, and distance (infinite vs. local)

• camlight(az,el) creates a light source relative to you
(the camera)

Lighting

• Lighting is not for the faint of heart, but
here are some tips:
– set(gcf,’renderer’,’opengl’) gives better

output and performance
– Keep track of handles to lights

• Turn them on or off (change visibility)
• Move them around

