2D Routines in 3D

Outline

- Announcements
 Wed: 2 Lectures, 8-10
 bagels or donuts?
 UW II due Wood 5DM
 - HW II--due Wed. 5PM
 Discuss HWI on Wed
- Updated Syllabus
- Representing f(x,y)
- Lines & Surfaces in 3D
- Color & Surfaces
- Example: curtain.m

Syllabus

6. 2D routines in 3D: surfaces7. Advanced color and lighting

- 8.Interpolation & unstructured grids
- 9. GUI's I
- 10. GUI's II
- 11. Volumetric visualization I
- 12. VV II & where to go from here

• Lots of choices for visualizing 2D data, often depends on properties of data

	Structure of x & y		
	Regular Grid	Irregular	
2D view	pcolor	colortime	
	contour	circleplot	
3D view	surface	bar3	
	meshgrid	stem3	

- h=plot(x,y);get(h,'zdata')
 ans=
 - Empty matri:x 1-by-0
- Both patch and line objects have a zdata field. Plot and patch set this to []
- We can plot a line in 3D using plot3(x,y,z)
 - could also set zdata field manually

Controlling the 3D view

- We can control the size of the axes (limits) and the way they are drawn (view)
 - set(gca,'xlim',[minimum, maximum])--also for y and z
 - Can also set scale to log or reveerse direction (must be done manually)
- Clicking on the circle button allows you to rotate the axes in 3D

Surfaces in 3D

- Like lines, patch and surface objects have zdata fields.
- surf(X,Y,Z) creates a surface with vertices defined by X,Y, and Z
 - color is proportional to Z - facecolor=flat
- mesh(X,Y,Z) is similar, but doesn't fill polygons
 - edgecolor=flat

Comparing surf and pcolor

• pcolor is a special form of surf

field	pcolor(x,y,Z)	surface(x,y,Z)	
xdata	x	x	
ydata	У	У	
zdata	[]	Ζ	
cdata	Ζ	Ζ	
facecolor	`faceted'	`faceted'	
view	orthographic	perspective	
 How can we 	change cdata?		

CDATA

- We can use surface plots to represent 3D functions c=f(x,y,z)
 - x,y, and z define a surface
 - c is represented by color
- surf(X,Y,Z,C) where C is the same size as Z

curtain.m						
			I			
	name	size	desctiption			
Inputs	x	1-by-n	x-locations			
	У	1-by-n	y-locations			
	z	m-by-1	depth bins			
	BS	m-by-n	data			
Outputs	h	scalar	handle to the curtain			

<u>curtain.m</u>

• The key to curtain is forming matrices X,Y, and Z from vectors x, y, and z

x1,y1	x2,y2	x3,y3	x4,y4	x5,y5
z1	z1	z1	z1	z1
z2	z2	z2	z2	z2
z3	z3	z3	z3	z3

• Z=z(:)*ones(1,n);

• X=ones(m,1)*x(:)';Y=ones(m,1)*y(:)';