

Outline

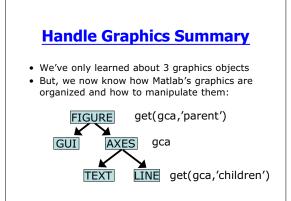
- Announcements
 - Homework I due Wed. 5PM by e-mail
- No lecture on Fri. 10/26, rescheduled to Wed. 10/31 at 8AM (free caffeine & carbohydrates) • Printing and saving
- Summary so far
- More 1D functions
- bar: 1D function, 2D objects

Printing and Saving

- Can save figure to a .fig file from the GUI
 - Opening the file (from GUI) will recreate the figure
 - The figure will contain same objects as before
 - can add to the figure or edit objects
- Print through GUI or command line
- print by itself will send gcf to default printer

Exporting graphics

- Can save figures to several standard graphics formats using print
 - print -djpeg fname.jpg will save gcf to a JPEG file
 JPEG (Joint Photographic Experts Group) file is a standard raster file


 - a raster file is a matrix of pixels

 - JPEGs are extremely portable (can view them in a web browser) and compact
 - Good if your figure is very complex (lots of 2D objects and color)

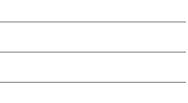
Exporting Graphics

- print -depsc fname.eps will save gcf to an EPS file • EPS (encapsulated post script) is standard format for saving vector graphics

- Vector graphics are made up of mathematical objects-lines, Bezier curves, polygons, text.
- The objects have properties such as line weights, fonts, & colors · Because the objects are represented mathematically,
- EPS files can be scaled without loosing resolution
- They are less portable than JPEGs (need special software like Illustrator, or ghostscript)
- However, you can edit the file easily

Handle Graphics Summary

- Objects have properties (like fields in a database or a Java object)
- Each object has a handle (like a name or pointer)We can use the handle to
- We can use the handle to examine properties and change them using set and get
- Other objects have new properties, but how we work with them is the same


type	line
color	[0 0 1]
marker	none
linestyle	:

handle=h

A Demonstration

- To prove that we understand handle graphics, I will show some specialized 1D plots, and we will try to figure out how they are implemented in Matlab
- For each one, we will answer:
 What objects are created?
 - What are their properties?

Demo			
Name	Descrip.	Objects Created	Properties
spy	matrix structure		
semilogy	Log-scale		
polar	polar coordinates		
plotyy	plot against 2 y-scales		
bar	bar plots		

What about bar?

- bar represents a 1D function using 2D objects--rectangles
- the rectangles are represented in Matlab as a patch object
 - Patches are polygons
 - Patches can have complicated colors
 - Patches (or related surface objects) are used by all higher-order functions

Key properties of patch objects

- edgecolor--color of the edges
- facecolor--color inside the the patch
- Both of these can be set to a specific color (or none)
- Or, we can prescribe another dimension of data at each vertex and let it control the color

Drawing patches

- Lots of functions produce patches
- patch is the lowest level functioned (followed closely by fill)
- patch(x,y,c)--x and y specify vertex coordinates, c controls the color
- coordinates, c controls the color
 patch(X,Y,C)--Each column of X, Y, and C is a separate patch

