
1

Figures & Axes, Printing & SavingFigures & Axes, Printing & Saving

Outline

• Announcements
– Homework I due Wed. 5PM by e-mail
– No lecture on Fri. 10/26, rescheduled to

Wed. 10/31 at 8AM (free caffeine &
carbohydrates)

• Printing and saving
• Summary so far
• More 1D functions
• bar: 1D function, 2D objects

Printing and Saving

• Can save figure to a .fig file from the
GUI
– Opening the file (from GUI) will recreate the

figure
– The figure will contain same objects as

before
• can add to the figure or edit objects

• Print through GUI or command line
– print by itself will send gcf to default printer

2

• Can save figures to several standard graphics
formats using print
– print -djpeg fname.jpg will save gcf to a JPEG file

• JPEG (Joint Photographic Experts Group) file is a
standard raster file

• a raster file is a matrix of pixels
• This means that they have a fixed resolution

– if you blow up a JPEG, the quality will decline (you will
begin to see the pixels

– can controll the resolution using -r<pixels/inch>
• JPEGs are extremely portable (can view them in a web

browser) and compact
• Good if your figure is very complex (lots of 2D objects

and color)

Exporting graphics

– print -depsc fname.eps will save gcf to an EPS file
• EPS (encapsulated post script) is standard format for

saving vector graphics
• Vector graphics are made up of mathematical objects--

lines, Bezier curves, polygons, text.
• The objects have properties such as line weights, fonts,

& colors
• Because the objects are represented mathematically,

EPS files can be scaled without loosing resolution
• They are less portable than JPEGs (need special

software like Illustrator, or ghostscript)
• However, you can edit the file easily

Exporting Graphics

Handle Graphics Summary

• We’ve only learned about 3 graphics objects
• But, we now know how Matlab’s graphics are

organized and how to manipulate them:

FIGURE

GUI AXES

TEXT LINE

get(gca,’parent’)

gca

get(gca,’children’)

3

Handle Graphics Summary

• Objects have properties (like
fields in a database or a Java
object)

• Each object has a handle (like a
name or pointer)

• We can use the handle to
examine properties and change
them using set and get

• Other objects have new
properties, but how we work
with them is the same

:linestyle

nonemarker

[0 0 1]color

linetype

handle=h

A Demonstration

• To prove that we understand handle
graphics, I will show some specialized
1D plots, and we will try to figure out
how they are implemented in Matlab

• For each one, we will answer:
– What objects are created?
– What are their properties?

Demo

bar plotsbar

plot against
2 y-scales

plotyy

polar
coordinates

polar

Log-scalesemilogy

matrix
structure

spy

PropertiesObjects
Created

Descrip.Name

4

What about bar?

• bar represents a 1D function using 2D
objects--rectangles

• the rectangles are represented in
Matlab as a patch object
– Patches are polygons
– Patches can have complicated colors
– Patches (or related surface objects) are

used by all higher-order functions

Key properties of patch
objects

• edgecolor--color of the edges
• facecolor--color inside the the patch
• Both of these can be set to a specific

color (or none)
• Or, we can prescribe another dimension

of data at each vertex and let it control
the color

Drawing patches

• Lots of functions produce
patches

• patch is the lowest level
functioned (followed closely by
fill)
– patch(x,y,c)--x and y specify vertex

coordinates, c controls the color
– patch(X,Y,C)--Each column of X, Y,

and C is a separate patch

0 1

1

0

x=[0 1 0]
y=[0 0 1]
c=‘r’

