Figures \& Axes, Printing \& Saving

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline

- Announcements
- Homework I on web, due Wed. 5PM by e-mail
- No lecture on Fri. 10/26, rescheduled to Wed. 10/31 at 8AM (free caffeine \& carbohydrates)
- What happens when you plot
- Figures
- Axes
- Printing and saving

What happens when you plot

- We know that plot(x, y) produces a line object
- We also know that we can get a handle to the object and change its properties
- But, other things happen too:
- A new window is created (a "figure")
- A white rectangle is placed in the window (an "axes")
- The rectangle has ticks and numbers attached to it
- The line object is placed on the rectangle

Figures and Axes

- Figures and axes are also objects
- We can get handles to them and change their properties
- These objects are created as needed when graphics routines are called
- They can also be created explicitly

Figures

- If no figures are open, Matlab will create one when you call a graphics routine
- If a figure is open, then any subsequent graphics will be placed in that figure
- Figures can be created explicitly by calling figure
- $\mathrm{h}=$ figure; --creates a new figure, handle saved in h
- Figures can be cleared with clf

Multiple Figures

- If multiple figures are open and you call plot, where does the new line go?
- One of the figures is the "current figure"
- the current figure is the last one you plotted into or the last one created
- the function gcf returns a handle to the current figure

Multiple Figures

- More ways to use figure
- figure(n)
- if figure number n doesn't exist, then it is created
- if it exists, then it becomes the current figure
- regardless, it will be the current figure
- figure(h)--changes current figure to h (a figure handle)
- Delete figures with close
- close(h)--closes figure with handle h
- close(n)--closes figure number n
- close all closes all figures

Figure Properties

- Lots of properties, the interesting ones are
- color--color of figure (usually gray)
- colormap--specifies colors for 2D plots
- Paper stuff--controls how figure maps onto printer page

Figure Properties

- Position--[Ilx,lly,width, height] - (llx,\|y) is the position of the lower-left corner - Renderer-- 'painters', 'zbuffer', 'OpenGL' - algorithms used to display the graphics - Units-- 'pixels' or 'relative' --units used to specify position

Axes

- Figures can only contain axes (and some special GUI stuff)
- Axes can contain anything (except figures, axes, and some GUI stuff)
- Axes are created if needed
- Can be created explictly with axes
- axes -- creates default axes (most of fig)
- axes('position',[llx,lly,width, height])--creates axes with specific position
- can return handle to the new axes

Multiple Axes

- If several axes exist on gcf, where does your plot go?
- One of the axes is the "current axes"
- The current axes is the last one you plotted into or the last one created
- The function gca returns a handle to the current axes
- Switching gcf will switch gca

Multiple Axes

- In many ways, axes and figures are managed the same way, but...
- axes are not numbered in any intelligible way, so axes(1) is meaningless
- If you have multiple axes, you must save their handles and switch axes using axes(h)
- Matlab's subplot command returns some of this functionality (example in a minute)

Axes Properties

- Box--on/off --switches box around axes on and off
- Camera stuff--controls how the objects in axes are viewed
- Clim--limits for color mapping
- Color--color of the axes (usually white)
- Font stuff--controls fonts on labels
- Line stuff--properties of the axes lines (options for grid lines)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Axes Properties

- NextPlot-- 'add', 'replace', 'replacechildren'-what happens to objects in axes when a new one is created
- default is replace--old stuff is deleted
- can change to add using "hold on" or replace using "hold off"
- Position--controls where the axes goes in figure
- Tick stuff--controls properties of tick marks
- Title--handle of text object with axes title - title('axes title') will title the axes
- Units--several options, default is normalized

Axes Properties

- Axes have 3 axes: X (horizontal), Y (vertical), Z (height)
- We can control the range and appearance of each
- XColor--color of the axis lines
- XGrid--on/off turns grid lines on or off
- XLabel--handle of text object with x axis label
- xlabel('x label') will label the x axis
- XLim--range of the x axis
- cas set xlim and ylim togther with axis command
- XScale--linear/log --can plot on a $\log 10$ scale

Axes Properties

- Xtick--where the tick marks (and labels) occur \qquad
- XTickLabel--the labels
- Matlab works hard to pick "good" labels (base 10)
- Can change labels by setting ticklabel - set(gca, 'xticklabel', 'first|second|third')
- Setting Xtick or XTickLabel will change XTickMode or XLabelModes to 'manual'-may give problems if figure is resized

Handle Tree

- Matlab organizes graphics like a tree
- The parent and children fields allow you to traverse the tree

Example--subplot vs. multiax

- You can produce mulitple axes laid out in a regular fashion using subplot
- subplot(m, n, j) produces the jth axes from an m -by-n grid of axes

- if subplot(m, n, j) exists, then calling it will set gca to this axes
- $\mathrm{h}=\operatorname{subplot}(\mathrm{m}, \mathrm{n}, \mathrm{j})$ returns the handle to the jth subplot

Criticisms of subplot

- Numbering is consistent with English, but not with Matlab \qquad
- Too much white space--gets ugly if m or n are big
- $a x=\operatorname{multiax}(m, n,\{l i m i t s\})$ is a "flexible, handson" alternative to subplot
- ax(1)=handle to invisible axes encompassing whole figure
- useful for annotating figure
- $\operatorname{ax}(1+(1: m * n))=$ handles to the $m * n$ subplots - numbered "correctly"
- limits allows you to control space around axes

Printing and Saving

- Print through GUI or command line
- print -depsc fname.eps will save gcf to an EPS file
- print -djpeg fname.jpg will save gcf to a JPEG
- Can also save figure to a .fig file from the GUI
- Opening the file (from GUI) will recreate the figure

