

- Announcements
 - Homework I on web, due Wed. 5PM by e-mail
 Reschedule Lecture on Fri. 9/26

 Options:

 - Options:
 before class on Wednesday (free coffee & bagels)?
 after class on Wednesday?
 evening 8-9?
 Hands-on work?
- Plotting f(x)
- Dissecting plot
- Getting a handle on things
- Example: colortime.m

Plotting f(x) in Matlab

- Let x be a length n vector (1D array) - x=(0:49)/49;

 - x=linspace(0,1,50);
- Construct y=f(x)
 - y=sin(2*pi*x*2)./(2*x+0.5); - could also load x or y from a file

Plotting f(x) in Matlab

- Standard call: plot(x,y,options)
 - options control color, marker, and line style
 `ro:' plots in red (r) with circles at points (o) and a dotted line (:)
 - plot(x,y) uses default color (usually, blue)plot(y) is plot(1:n,y)
 - plot(X,Y) (X and Y are matrices) plots one line per column in X and Y

Output of plot

- "PLOT returns a column vector of handles to line objects, one handle per line"
- Huh?
 - handles?
 - line objects?

Getting a handle on things

- h=plot(x,y) will return a handle to the line--h
- Handles are just floating point numbers, but they function as pointers to Matlab graphics objects
- We can use them to get info about objects and to change the objects' properties

Getting a handle on things

- Get properties with "get"
 - get(h)--lists all of the properties of h and their values
 - get(h,property)--returns the value of the property
 types vary with property (some are texts, some are arrays)
- Change properties with "set"
 - set(h)--lists all of the properties and their default values
 - set(h,property,value, property, value,...)--changes the values of the properties
- set is "vectorized" so you can change properties of lots of objects simultaneously

Handle Properties--ALL objects

- The last 18 properties from get(h) are properties that all objects have
- Most important:
 - Parent--handle to parent object
 - Children--handles to child objects
 - Type--tells what it is (e.g. line)
 - Visible--(on/off) can hide objects
- A few other general properties are used for GUI's

Handle Properties--line objects

- xdata, ydata, zdata specify the points
- color describes color of the line segments
 - specify with a "colordef"
 - a special character ('r', 'g', 'b', 'k', etc.)
 RGB vector (1-by-3 with numbers between 0 and 1)
- linestyle--controls how line segments look
- '-'=solid, ':'=dotted, '--'=dashed, 'none'=no lines
- linewidth--thickness of line (a double)

Handle Properties--line objects

- marker--marker type

 'o'=circles, 'x'=x's, '+'=crosses,
 'p'=pentagrams, 's'=squares, '^'=triangles
- markerfacecolor--color of the inside of the marker
- markeredgecolor--color of the outside of the marker
- markersize--size of marker

Example--Representing time with color

- We have a function y=f(x,t) sampled at discrete times
- We want to plot y for each t as a different color
 - the colors should correspond to t and vary continuously
- We will implement this as a Matlab function "colortime.m"

Development of colortime

• 1) Identify inputs and outputs to function

	variable	size	description
Inputs:	х	m-by-1	row labels
	t	1-by-n	column labels
	Y	m-by-n	data matrix s. t. Y(j,k)=f(x(j),t(k))
Outputs:	h	n-by-1	handles to lines representing Y(x,t(k))

Development of colortime

- 2) Top-down design using pseudocode

 Like outlining a manuscript
 First, identify key steps, describe in English
 Then, figure out how to implement each step in code
 Steps may be complex enough to warrant further top-down refinement (recursion)