Text Processing

Outline
• Announcements:
 – Homework I: due Today. by 5, by e-mail
 – Discuss on Friday.
 – Homework II: on web
• HW I: question 7
• Finish functions
• Text
• Matlab path
• Survey

HW I: question 7
• Lots of people having trouble
 – $dt=0.1$, $t=(0:dt:21*dt)$;
 – N is up to you, so pick something easy
This isn’t English!

- Why do we need text?
 - Comments from functions
 - File names
 - Label plots
 - Interact with users
 - Record-based I/O

Hello World!

- Create strings with single quote (‘)
 - a=’Hello World!’
- Believe it or not, characters are not doubles
 - a is an array of char
- Can display text nicely with disp(str)
 - if str is a matrix, each row is a new line

Working with text

- Concatenation--same as with other vectors
 - a=’Hello’; b=’World!’;
 - greetings=[a,’ ’;b];
 - Will greetings=[a;b] work?
Number-to-String Conversions

- `int2str` & `num2str` convert numbers to text
 - `int2str(2)` returns ‘2’
- `str2num` converts to numbers
 - `str2num('3')*2` returns 6

Searching for strings

- can search for single characters with `find`
 - `str='Scripts are evil!'; I=find(str=='');` % `I=[8 12]`
- search for substring `ss` in `str` with
 - `I=findstr(ss,str)`
 - `I=find('evil',str);` % `I=[13];`
 - `findstr(str,ss)` is the same
 - `findstr` always searches for small string in big string

Working with ASCII

- `double(str)` returns an array with ASCII codes
 - `str='012ABCabc'`
 - `num=double(str)=[48 49 50 65 66 67 97 98 99]`
- `char(num)` converts ASCII codes to char
 - `char(num)` returns ‘012ABCabc’
Misc. Text Functions

- `R=input(QuestionStr)`
 - asks user for input, returned as R
 - DO NOT USE IN THIS CLASS!!!
 - For entertainment purposes only. Function arguments are the best way to get info into your functions

- `xlabel`, `ylabel`, `title` -- label plots

- `text(x,y,str)` -- places string at x,y on plot

- `S=sprintf(str, val1, val2, ...)` -- C-like string creation
 - `S=sprintf('Integer %d
Double %f
', 5, -pi);`
 - S is 1-by-27 array of char

String Summary

- Matlab stores strings in arrays of char (ASCII)
 - convert to ASCII values with double, to ASCII text with `text`
 - Convert numbers to strings with `int2str`, `num2str`, `sprintf`
 - Convert strings to numbers with `str2num`

- Search strings with `find` (single character) or `findstr` (substring)

Matlab Path

- Matlab maintains a list of directories where it searches for files
 - m-files, data files
 - Type "path" to see
 - Can add directories using `addpath` or through GUI
 - Ex: `addpath('D:\Andy\mfiles')`
• **startup.m**

 - startup.m is a special script (the only good one!) that (if it exists) is executed as Matlab starts
 - Not installed-You must create it
 - On UNIX/Mac, startup.m is in ~/matlab
 - Windows: %MATLABROOT%	oolbox\local
 - Windows NT/2000: in matlab in Profiles directory
 - Ex: C:\WINNT\Profiles\andy\matlab
 - Can find out where profiles are found by typing `getenv('USERPROFILE')`

• **startup.m**

 - Uses of startup.m
 - Personalize path--place addpath statements
 - Customize matlab
 - Set default directory
 - Set default graphics output (see 402)

• **Personal Opinion**

 - Create your own m-files directory, & put m-files there
 - group m-files into subdirectories by topics
 - Place addpaths in startup.m so you can always use your functions
 - CD into data directories & work there

Above is the instructor’s opinion and does not necessarily reflect that of CIS or Cornell University
You now know the basics of Matlab.
- The rest of the course will be spent extending and reinforcing that knowledge
- More Matlab or more applications?

<table>
<thead>
<tr>
<th>Survey</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Matlab</td>
</tr>
<tr>
<td></td>
<td>Polymorphic functions</td>
</tr>
<tr>
<td></td>
<td>Objects beyond arrays</td>
</tr>
<tr>
<td></td>
<td>Improving performance</td>
</tr>
<tr>
<td></td>
<td>Applications</td>
</tr>
<tr>
<td></td>
<td>File I/O (binary & text)</td>
</tr>
<tr>
<td></td>
<td>Linear Systems</td>
</tr>
<tr>
<td></td>
<td>Diff. Equations</td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
</tr>
<tr>
<td></td>
<td>Graphics</td>
</tr>
<tr>
<td></td>
<td>Polynomials & splines</td>
</tr>
<tr>
<td></td>
<td>Signal processing (FFT)</td>
</tr>
<tr>
<td></td>
<td>Optimization</td>
</tr>
</tbody>
</table>