Where to Go Next

Outline

• Announcements:
 - Homework IV due Friday by 5, by e-mail
 - Absolutely no exceptions!
 - Answers will be posted on web
 - I will be available during office hours & by appt.
 - Homework III: answers on web
• Homework III
• What you know
• What I haven't told you, & where to find out more
• Course Evaluations

Homework III

• Most did well
• Randvals
 - Lots of different ways to get normal dist. random numbers
 • I like randn since it's a "core" function
 • randvals(j,:) = randn(1,n)*mean_sd(j,2)+mean_sd(j,1);
goodrows

• Key is to create notnans--matrix with 1’s where x is good

\[
\text{notnan} = \neg \text{isnan}(x)
\]

\[
\begin{array}{c}
1 & 2 & \text{nan} & 7 \\
2 & 5 & 8 \\
\text{nan} & 6 & \text{nan}
\end{array}
\quad
\begin{array}{c}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}
\]

if(isnan(bad))
else %bad is a value (-99)

\[
\begin{array}{c}
1 & -99 & 7 \\
2 & 5 & 8 \\
-99 & 6 & -99
\end{array}
\quad
\begin{array}{c}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}
\]

notnan=(x~=bad)

Once you have notnan, loop I gave will work:

\[
\begin{array}{c}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}
\]

\[
\begin{array}{c}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}
\]

\[
\begin{array}{c}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}
\]

%goodrows

Some Advice

• Key ingredients for computational success:
 - Confidence!—you know a lot and you know where to look for what you don't know
 - Planning!—work it out on paper, then with small examples, then with real data
What Do You Know?

- You know enough Matlab to solve any of these problems

<table>
<thead>
<tr>
<th>Data</th>
<th>Program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currents</td>
<td>SSA</td>
<td>Geostropic eq.</td>
</tr>
<tr>
<td>Weather</td>
<td>T,V,M</td>
<td>Total diff.</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>ATCGCGTA...</td>
<td>Search for genes</td>
</tr>
<tr>
<td>Electronics</td>
<td>Figurative</td>
<td>FFT</td>
</tr>
</tbody>
</table>

What Do You Know?

- You know how to
 - get ASCII and binary data into Matlab
 - data are stored in arrays (vectors, matrices, ND-arrays)
 - Manipulate data with array operations
 - find, relational and logical operators
 - get data out of Matlab

What Do You Know?

- You know that Matlab has built in functions for
 - statistics
 - graphics
 - solving ODE's
 - optimization
 - signal processing
What I Haven’t Told You

- Matlab has lots of functions, and you’ll never know them all
 - learn about functions through
 - help, helpwin, or help browser (through GUI)
 - www.mathworks.com

What I Haven’t Told You

- Other important packages
 - splines (turn anything into a smooth function)
 - finance (follow the money)
 - mapping (explore your world)
 - Simulink (GUI for creating dynamical systems)

What Do You Know?

- You know how to extend Matlab’s capabilities through functions
 - function [outputs]=fname(inputs);
- And that Matlab is a procedural programming language
 - Iterations with for & while loops
 - Conditionals with if-elseif-else-end
 - error(string)
- And that Matlab functions can be polymorphic
 - nargin, varargin, etc.
What Do You Know?

- You know how to create strings in Matlab:
 - "[]
 - int2str, num2str
- You know how to manipulate strings:
 - just like arrays
 - find, findstr
 - str2num

What I Haven’t Told You

- You can construct commands with strings and execute with eval:
 for j=1:9;
 k=int2str(j);
 eval(['newvar',k,'=rand(10,1);']);
 eval(['save newvar',k,' newvar',k]);
 end

What I Haven’t Told You

- Matlab is more than just arrays of doubles:
 - structs—similar to C-structs or Java objects
 - Create a variable called student with fields:
 - student(1),name="Pershing" %string with student’s name
 - student(1).id=55552 %ID number
 - student(1).balance=0.52 % balance on bank account
 - student(1).hold=true % Bursar hold status (always true)
 - Get data out with student.fieldname
 - student(1).id
 - ans= 55552
 - Struct functions
 - struct, rmfield, isfield, getfield, fieldnames
What I Haven’t Told You

- Cell-arrays are arrays of anything
 - C=cell(3,1); %creates a cell-array with 3 elements
 - C(1)=[1:3]; C(2)=student; C(3)=randn(1000);
- Cell-arrays are especially useful for holding text data
 - C{1}="This is a long line"
 - C{2}="short line"
 - disp(C)
 This is a long line
 short line

Other Scientific Computing Courses

- CS421--Introduces basic concepts and issues in scientific computing and numerical analysis
- CS621, CS622, CS624--Advanced scientific computing and numerical analysis (Matrices, Optimization, ODE/PDE’s)
- Math and Applied Math offer courses on linear algebra, ODE/PDE’s
- Domain-specific courses in your department

Other Scientific Computing Courses

- CIS Tools Curriculum
 - Fall: MATLAB
 - 401: the basics
 - 402: visualization (starts Monday!)
 - Spring: General tools
 - 403: Developing scientific computer programs
 (compilers, debuggers, managing large projects)
 - 404: Numerical libraries
Evaluations

- Please give me as much data as you can
 - specific lecture/topics you liked & those you didn't
 - other topics to cover?
 - Tools Curriculum & mini-course format?