Outline

• Announcements:
 – Homework IV due Friday by 5, by e-mail
 – Absolutely no exceptions!
 – Answers will be posted on web
 – I will be available during office hours & by appt.
 – Homework III: answers on web
• Homework III
• What you know
• What I haven’t told you, & where to find out more
• Course Evaluations

Homework III

• Most did well
• Swan Modeling
 – Each iteration j
 • compute B(N(j)), D(N(j)), P(N(j))
 • if(random #<P) N(j+1)=N(j)+1 else N(j+1)=N(j)-1 end
 • compute dt
 • t(j+1)=t(j)+dt
Swan Modeling

- Can do iterations with for or while loops:

  ```
  for j=1:MAXEVENT-1
    <Get N(j+1) & t(j+1)>
    if(N(j+1)<=0) break; end
  end
  
  or
  
  j=1;
  while(j<MAXEVENT & N(j)<0)
    <Get N(j+1) & t(j+1)>
    j=j+1;
  end
  
  then
  
  N=N(1:j+1) (for loop) or N=N(1:j) (while loop) to delete unneeded elements
  ```

Swan Experiment

- Initialize counters: extinct=0; trials=100;
- Call your function 100 times
- analyze t and N to determine if extinct before 20 years

```matlab
n=length(t);
if(t(n)<=20 & N(n)<=0)
  extinct=extinct+1;
elseif(t(n)<20)
  trials=trials-1;
end
```

Then, Prb{extinct before 20}=extinct/trials

What Do You Know?

- You know enough Matlab to do solve any of these problems

<table>
<thead>
<tr>
<th>Areas</th>
<th>Data</th>
<th>Program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currents</td>
<td>max;</td>
<td>develop nc.</td>
<td>T/V plot</td>
</tr>
<tr>
<td>Weather</td>
<td>T,V,M</td>
<td>finite diff.</td>
<td>T,V,M in future</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>sequence</td>
<td>search for genes</td>
<td>localization of genes</td>
</tr>
<tr>
<td>Electronics</td>
<td>FFT</td>
<td>plot</td>
<td>U,V,plot Geostrophic eq. SSH Currents</td>
</tr>
</tbody>
</table>

Plot of spectrum FFTSignal Electronics

Location of genes Search for genes ATCGCGTA … Bioinformatics

T,V,M in future Finite diff. T,V,M Weather

U,V,plot Geostrophic eq. SSH Currents

Output Program Data
What Do You Know?

• You know how to
 – get ASCII and binary data into Matlab
 – data are stored in arrays (vectors, matrices, ND-arrays)
 – Manipulate data with array operations
 • find, relational and logical operators
 – get data out of Matlab

What Do You Know?

• You know that Matlab has built in functions for
 – statistics
 – graphics
 – solving ODE’s
 – solving linear systems and analyzing matrices

What I Haven’t Told You

• Matlab has lots of functions, and you’ll never know them all
 – learn about functions through
 • help, helpwin, or help browser (through GUI)
 • www.mathworks.com
What I Haven’t Told You

- Other important packages
 - signal processing (beyond FFT)
 - splines (turn anything into a smooth function)
 - finance (follow the money)
 - mapping (explore your world)
 - optimization (the best of all possible worlds)
 - Simulink (GUI for creating dynamical systems)

What Do You Know?

- You know how to extend Matlab’s capabilities through functions
 - function [outputs]=fname(inputs);
- And that Matlab is a procedural programming language
 - Iterations with for & while loops
 - Conditionals with if-elseif-else-end
 - error(estring)
- And that Matlab functions can be polymorphic
 - nargin, varargin, etc.

What I Haven’t Told You

- Matlab is more than just arrays of doubles
 - structs--similar to C-structs or Java objects
 - Create a variable called student with fields:
 - name--string with student's name
 - ID-- a number
 - balance--balance on Bursar account
 - hold--(logical) Bursar hold status (always true)
 - Get data out with student.fieldname
What I Haven’t Told You

- Cell-arrays are arrays of anything
 - C=cell(3,1); %creates a cell-array with 3 elements
 - C{1}={[1:3]; C{2}=student; C{3}=randn(1000);}
- Cell-arrays are especially useful for holding text data

Other Scientific Computing Courses

- CS421--Introduces basic concepts and issues in scientific computing and numerical analysis
- CS621, CS622, CS624--Advanced scientific computing and numerical analysis (Matrices, Optimization, ODE/PDE’s)
- Math and Applied Math offer courses on linear algebra, ODE/PDE’s
- Domain-specific courses in your department

Other Scientific Computing Courses

- CIS Tools Curriculum
 - Fall: MATLAB
 - 401: the basics
 - 402: visualization (starts October 15)
 - Spring: General tools
 - 403: Developing scientific computer programs (compilers, debuggers, managing large projects)
 - 404: Numerical libraries
Evaluations

• Please give me as much data as you can
 – specific lecture/topics you liked & those you didn’t
 – other topics to cover?
 – Tools Curriculum & mini-course format?
• Thanks!