Input Output

Garbage In,
Garbage Out

Outline

e Announcements:

- Homework III: due Today. by 5, by e-mail
* Discuss on Friday.

- Homework IV: on web, due following Friday

e Linear Systems Example: Advection-
Diffusion

e Advanced ASCII
e Binary Basics

Key Points on Linear Systems

e They're everywhere
e Easy to solve in Matlab (\)

o If possible, reuse factors from LU-
decomposition

e Never use inv(A) for anything important

e Linear algebra (analytical and numerical)
are highly recommended

Advection-Diffusion

oC ac 82C

% e
e Model concentration of “contaminant” C
e Similar equations occur in
- fluid dynamics

- developmental biology
- ecology

Numerical Solution

e We start with an initial distribution of C over
the interval [0 1]

e Divide [0 1] into discrete points separated by
dx C(x,t)

C(x,t)

X

e C(x,t+dt) will depend on C(x), C(x-dx), &
C(x+dx)

Numerical Solution

e replace partial derivatives with
differences:

art-o | Che-On OR 20Ol
di dx dx?
Ot —o (O, —200 " —C8) = O+ MCh0—Ch)
[—0 (1+20) —o]x| CF* | = 4 A(Che—C)
O’H—dft

e The solution of C(x,t+dt) depends on
neighboring points

Numerical Solution

e Each C, will have a row in matrix A
o All rows are the same except for first
and last

- We need to specify what happens at end
points
- Boundary conditions are a big problem
- We'll use periodic BC's
* C(0)=C(1), so first and last rows are:
[A+20) -0 .. —0]
[—e .. (A+20) —0]

Sparse Matrices

e A is sparse

- the only non-zero elements are immediately
above, below, and on the diagonal

- corners for periodic BC's
e Matlab has special sparse matrices
- 81u)ch less memory (don’t need space for
's
- faster to process
- A=sparse(I1,],S) forms A s.t.
AIL(7),IGN=S0)

AdvDiff1D.m

e Uses slightly more complicated procedure for
advection known as “Lax-Wendroff”
e Must specify
- Initial concentration CO
- parameters (u, k)
- size of domain L
- length of time T,
- dx, dt
e Returns x, t, and N(x,t)

Advanced ASCII

e Read tables of ASCII data with load

e Other functions like textread will read
simple files

e Sometimes, you’ve just got to do it
yourself
- Complicated files

Opening Files

e To read a file manually, open with fopen
- fid=fopen(‘fname’, ‘rt’);
- fid will be <1 if open fails

e File I/O functions accept fid

e Close the file when you’re done with
fclose(fid)

Reading files

o A=fscanf(fid,cstring,{N})
- like C’'s fscanf, cstring is a C format string:
 ‘%d\t%f’--integer (%d),tab(\t),double (%f)
- fscanf is “vectorized” and Matlab will keep
trying to match cstring. Limit with N
o lin=fgetl(fid)
- Reads a single line from the file as text
(char array)
- Process lin with str2num, findstr, sscanf

e Test for end of file with feof(fid);

Writing Files

¢ Save matrices using save fname varname -

ascii

e Doing it yourself:

- fid=fopen(‘fname’,’'wt’)
- fprintf(fid,cstring, variables)
- Example:
e A=[(1:10)’, sin(2*pi*0.1*(1:10)")];%[integers,
doubles]
« fid=fopen(‘example.txt’,'wt’);
o fprintf(fid,'%d %f\n’,A");
» fclose(fid);

Binary Basics

All computer files are “binary”, that is
composed of 0’s andl’s

When the computer reads ASCII files, it takes
chunks of 8 bits (1 byte) and looks up the
character

To save pi to 16 digits takes 18 bytes in ASCII
If you save the 1’s and 0’s that correspond to
the double precision value of pi, that takes
only 8 bytes

Problem with Binary Files

* You can't just look at them

e You must know exactly how they were
created

- integers vs. floating point

- single precision vs. double precision

- signed vs. unsigned

Reading Binary files

o fid=fopen(fname,’r’);
o A=fread(fid,N,precision)
- N=number of data points

- precision is how the file was created
* "uint64” is an unsigned integer saved in 64 bits
e “double” is a double

Free advice (you get what

you pay for)

e The only reasons to use binary files are
- someone gives you one
- you enjoy frustration and pain

- you're too poor (or cheap) to buy a new
hard drive

