
1

Input Output

Garbage In,
Garbage Out

Outline

• Announcements:
– Homework III: due Today. by 5, by e-mail

• Discuss on Friday.

– Homework IV: on web, due following Friday

• Linear Systems Example: Advection-
Diffusion

• Advanced ASCII
• Binary Basics

Key Points on Linear Systems

• They’re everywhere
• Easy to solve in Matlab (\)
• If possible, reuse factors from LU-

decomposition
• Never use inv(A) for anything important
• Linear algebra (analytical and numerical)

are highly recommended

2

Advection-Diffusion

• Model concentration of “contaminant” C
• Similar equations occur in

– fluid dynamics
– developmental biology
– ecology

Numerical Solution

• We start with an initial distribution of C over
the interval [0 1]

• Divide [0 1] into discrete points separated by
dx

• C(x,t+dt) will depend on C(x), C(x-dx), &
C(x+dx)

x

C(x,t)

C(x,t)

Numerical Solution

• replace partial derivatives with
differences:

• The solution of C(x,t+dt) depends on
neighboring points

3

Numerical Solution

• Each Cx will have a row in matrix A
• All rows are the same except for first

and last
– We need to specify what happens at end

points
– Boundary conditions are a big problem
– We’ll use periodic BC’s

• C(0)=C(1), so first and last rows are:

Sparse Matrices

• A is sparse
– the only non-zero elements are immediately

above, below, and on the diagonal
– corners for periodic BC’s

• Matlab has special sparse matrices
– much less memory (don’t need space for

0’s)
– faster to process
– A=sparse(I,J,S) forms A s.t.

A(I(j),J(j))=S(j)

AdvDiff1D.m

• Uses slightly more complicated procedure for
advection known as “Lax-Wendroff”

• Must specify
– Initial concentration C0
– parameters (u, k)
– size of domain L
– length of time T,
– dx, dt

• Returns x, t, and N(x,t)

4

Advanced ASCII

• Read tables of ASCII data with load
• Other functions like textread will read

simple files
• Sometimes, you’ve just got to do it

yourself
– Complicated files

Opening Files

• To read a file manually, open with fopen
– fid=fopen(‘fname’, ‘rt’);
– fid will be <1 if open fails

• File I/O functions accept fid
• Close the file when you’re done with

fclose(fid)

Reading files

• A=fscanf(fid,cstring,{N})
– like C’s fscanf, cstring is a C format string:

• ‘%d\t%f’--integer (%d),tab(\t),double (%f)

– fscanf is “vectorized” and Matlab will keep
trying to match cstring. Limit with N

• lin=fgetl(fid)
– Reads a single line from the file as text

(char array)
– Process lin with str2num, findstr, sscanf

• Test for end of file with feof(fid);

5

Writing Files

• Save matrices using save fname varname -
ascii

• Doing it yourself:
– fid=fopen(‘fname’,’wt’)
– fprintf(fid,cstring, variables)
– Example:

• A=[(1:10)’, sin(2*pi*0.1*(1:10)’)];%[integers,
doubles]

• fid=fopen(‘example.txt’,’wt’);
• fprintf(fid,’%d %f\n’,A’);
• fclose(fid);

Binary Basics

• All computer files are “binary”, that is
composed of 0’s and1’s

• When the computer reads ASCII files, it takes
chunks of 8 bits (1 byte) and looks up the
character

• To save pi to 16 digits takes 18 bytes in ASCII
• If you save the 1’s and 0’s that correspond to

the double precision value of pi, that takes
only 8 bytes

• You can’t just look at them
• You must know exactly how they were

created
– integers vs. floating point
– single precision vs. double precision
– signed vs. unsigned

Problem with Binary Files

6

• fid=fopen(fname,’r’);
• A=fread(fid,N,precision)

– N=number of data points
– precision is how the file was created

• “uint64” is an unsiqned integer saved in 64 bits
• “double” is a double

Reading Binary files

Free advice (you get what
you pay for)

• The only reasons to use binary files are
– someone gives you one
– you enjoy frustration and pain
– you’re too poor (or cheap) to buy a new

hard drive

