

### **Outline**

- Announcements:
  - Homework III: due Wed. by 5, by e-mail
    Office Hours: Today & tomorrow, 11-1
    Ideas for Friday?
- Linear Systems Basics
- Matlab and Linear Algebra

# **Ecology of Linear Systems**

- Linear Systems are found in every habitat:
  - simple algebra
  - solutions to ODEs & PDEs
  - statistics (especially, least squares)
- If you can formulate your problem as linear system, it will be easy to solve on a computer



• Simplest linear system: finding the equation of a line:

- y=m\*x + b

- The goal is to find m and b from observations of (x,y) pairs
- 2 points form a line, so we need two observations (x1. v1) & (x2.v2)

$$y_1 = mx_1 + b$$

$$y_2 = mx_2 + b$$







#### **Comparing methods**

- Gaussian Elimination is a simpler algorithm
  - Easily generalizes to systems with more unknowns
- Gaussian Elimination is the starting point of much of numerical linear algebra

# A Closer Look at GE (optional)

- For Am=y
  - GE reduces A to an upper triangular matrixPerform "back substitution" using modified
  - y
  - Modified y is equivalent to Ly
    L is a lower triangular matrix

• A=L\*U

### Other Algorithms for Solving Linear Systems

- GE aka LU decomposition -- any A
- Cholesky Factorization -- symmetric, positive definite A
- Iterative solvers (conjugate gradients, GMRES)

#### **Linear Systems in Matlab**

- Linear systems are easy in Matlab
  - To solve Ax=b, type x=A\b
  - To solve x'A'=b', type x'=b'/A' (transposed)

# More About \

- Matrix multiplication (\*) is easy, fast
- Matrix "division" (\) is hard and computationally intensive

   In general, performs GE with partial
  - In general, performs GE with partial pivoting
  - But, \ is smart & looks closely at A for opportunities to speed up
     If A is LT, just does back substitution
- If A is over-determined, A\b is the least-squares solution

## **Factorization**

- Can explicitly factor A using LU:
  - [L,U]=lu(A)
  - useful if you have to solve A\bmany times (different b each time)
    - To solve LUx=b: first solve Ly=b, then solve Ux=y
    - In Matlab: y=L\b; x=U\y;
- Other factorizations: chol, svd

### What about A<sup>-1</sup>?

- Matlab can compute A<sup>-1</sup> using inv(A), but ...
   inv(A) is slower than lu(A)
   There are numerical problems with inv(A)
- Rarely needed, use lu(A) or another factorization

$$s = c'A^{-1}d$$
  

$$s = c'U^{-1}L^{-1}d$$
  

$$Ly = d$$
  

$$Ux = y$$
  

$$s = c'x$$