Linear Systems

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline

- Announcements:
- Homework III: due Wed. by 5, by e-mail
- Office Hours: Today \& tomorrow, 11-1
- Ideas for Friday? \qquad
- Linear Systems Basics
- Matlab and Linear Algebra \qquad
\qquad
\qquad

Ecology of Linear Systems

- Linear Systems are found in every habitat: \qquad
- simple algebra
- solutions to ODEs \& PDEs
- statistics (especially, least squares)
- If you can formulate your problem as linear system, it will be easy to solve on a computer

"Standard Linear System"

- Simplest linear system: finding the equation of a line: \qquad
- $y=m^{*} x+b$
- The goal is to find m and b from observations of (x, y) pairs
- 2 points form a line, so we need two observations (x1. v1) \& (x2.v2)

$$
\begin{aligned}
& y_{1}=m x_{1}+b \\
& y_{2}=m x_{2}+b
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad

The 8th Grade Solution

- Solve for b in the first equation:
$b=y_{1}-m x_{1}$
- Substitute this for b in 2 nd equation $\&$ solve for m :

$$
\begin{aligned}
y_{2} & =m x_{2}+y_{1}-m x_{1} \\
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

- Put this into the equation for b above

The Sophomoric Solution

- Write the equations as a matrix problem

$$
\left[\begin{array}{ll}
x_{1} & 1 \\
x_{2} & 1
\end{array}\right] *\left[\begin{array}{c}
m \\
b
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

\qquad
\qquad

- Perform Gaussian Elimination on Matrix:
\qquad
$\left[\begin{array}{cc|c}1 & 1 / x_{1} & y_{1} / x_{1} \\ x_{2} & 1 & y_{2}\end{array}\right] \longrightarrow\left[\begin{array}{cc|c}1 & 1 / x_{1} & y_{1} / x_{1} \\ 0 & \frac{x_{1}-x_{2}}{x_{1}} & \frac{x_{1} y_{2}-x_{2} y_{1}}{x_{1}}\end{array}\right]$
$\left[\begin{array}{cc|c}1 & 1 / x_{1} & y_{1} / x_{1} \\ 0 & 1 & \frac{x_{1} y_{2}-x_{2} 2 y_{1}}{x_{1}-x_{2}}\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & 0 & \frac{y_{1}-y_{2}}{x_{1}-x_{2}} \\ 0 & \frac{x_{1}-x_{2}}{x_{1}} & \frac{x_{1} y_{2}-x_{2} y_{1}}{x_{1}-x_{2}}\end{array}\right]$ \qquad
\qquad

Comparing methods

- Gaussian Elimination is a simpler algorithm
- Easily generalizes to systems with more unknowns
- Gaussian Elimination is the starting point of much of numerical linear algebra

A Closer Look at GE

(optional)

\qquad
\qquad

- For $\mathrm{Am}=\mathrm{y}$
- GE reduces A to an upper triangular matrix
- Perform "back substitution" using modified y
\qquad
\qquad
- Modified y is equivalent to Ly
- L is a lower triangular matrix
- $A=L * U$
\qquad
\qquad
\qquad

Other Algorithms for Solving Linear Systems

- GE aka LU decomposition -- any A
- Cholesky Factorization -- symmetric, positive definite A
- Iterative solvers (conjugate gradients, GMRES

Linear Systems in Matlab

- Linear systems are easy in Matlab
- To solve $A x=b$, type $x=A \backslash b$
- To solve $x^{\prime} A^{\prime}=b^{\prime}$, type $x^{\prime}=b^{\prime} / A^{\prime}$ (transposed)

More About \}

- Matrix multiplication (*) is easy, fast
- Matrix "division" (\backslash) is hard and computationally intensive
- In general, performs GE with partial pivoting
- But, \is smart \& looks closely at A for opportunities to speed up
- If A is LT, just does back substitution
- If A is over-determined, $A \backslash b$ is the least-squares solution

Factorization

- Can explicitly factor A using LU:
- $[\mathrm{L}, \mathrm{U}]=\operatorname{lu}(\mathrm{A})$
- useful if you have to solve $A \backslash b m a n y$ times (different b each time)
- To solve LUx=b: first solve $L y=b$, then solve $U x=y$
- In Matlab: $y=L \backslash b ; x=U \backslash y ;$
- Other factorizations: chol, svd

What about A-1?

- Matlab can compute A^{-1} using inv(A), but ...
$-\operatorname{inv}(A)$ is slower than $\operatorname{lu}(A)$
- There are numerical problems with inv(A)
- Rarely needed, use lu(A) or another factorization
\qquad
$s=c^{\prime} A^{-1} d$
$s=c^{\prime} U^{-1} L^{-1} d$
$L y=d$
$U x=y$
$s=c^{\prime} x$

