

Outline

- Announcements:
 - Homework II: Solutions on web
 - Homework III: due Wed. by 5, by e-mail
- Homework II
- Differential Equations
- Numerical solution of ODE's
- Matlab's ODE solvers

Homework II

- Good job
- Something I learned:
 - logical addressing
 - I=some logical test of A
 - A(logical(I)) are elements in A where true mean(data(data~=-999))
- nargin
- Final FourierStuff

nargin

- Matlab functions can be polymorphic--the same function can be called with different numbers and types of arguments
 - Example: plot(y), plot(x,y), plot(x,y,'rp');
- In a function, nargin and nargout are the number of inputs provided and outputs requested by the caller.
- Even more flexibility using vargin and vargout

nargin

```
• Simplest application of nargin is to override default parameters
function [x,y]=112xy[lat,lon,ref,R)
if(nargin<3)
R= 6378.155*1000;
ref=[42.3493, -71.0264]; %default ref is Boston elseif(nargin==4)
if(length(ref)==2)%ref must be R
R=ref;
ref=[42.3493, -71.0264]; %default ref is Boston else
                            else
R= 6378.155*1000;
                            end
```

The Final (Fourier) Analysis

• Use myfft to get spectrum (a & b)

Fourier Analysis

- Spectrum tells you about time series
 - dominant frequencies
 - underlying statistical processes
- Could use FourierMat to filter data
 - >>alp=a;blp=b;
 - >>alp(13:end)=0;blp(13:end)=0;
 - >>xlp=FourierMat(alp,blp,f,t);

Differential Equations

- Ordinary differential equations (ODE's) arise in almost every field
- ODE's describe a function y in terms of its derivatives
- The goal is to solve for y

Example: Logistic Growth

- Similar to swan problem on PS3
- N(t) is the function we want (number of animals)

$$\frac{dN}{dt} = rN(\frac{K-N}{K})$$

Numerical Solution to ODEs

- In general, only simple (linear) ODEs can be solved analytically
- Most interesting ODEs are nonlinear, must solve numerically
- The idea is to approximate the derivatives by subtraction

Euler Method

$$\frac{dN}{dt} = f(N, t)$$

$$\frac{N_{t+1} - N_t}{\Delta t} = f(N_t, t)$$

$$N_{t+1} = N_t + \Delta t * f(N_t, t)$$

Euler Method

- Simplest ODE scheme, but not very good
- "1st order, explicit, multi-step solver"
- General multi-step solvers:

 $N_{\rm t+1} = N_{\rm t} + \Delta t *$ (weighted mean of f evaluated at lots of t's)

Runge-Kutta Methods

- Multi-step solvers--each N is computed from N at several times
 - can store previous N's, so only one evaluation of f/iteration
- Runge-Kutta Methods: multiple evaluations of f/iteration:

 $a \ = \ \Delta t f(N_t,t)$

 $b = \Delta t f(N_t + a/2, t + \Delta t/2)$

 $c = \Delta t f(N_t + b/2, t + \Delta t/2)$

 $d = \Delta t f(N_t + c, t + \Delta t)$

 $N_{t+1} = N_t + 1/6 * (a + 2b + 2c + d)$

Matlab's ODE solvers

- Matlab has several ODE solvers:
 - ode23 and ode45 are "standard" RK solvers
 - ode15s and ode23s are specialized for "stiff" problems
 - several others, check help ode23 or book

Matlab's ODE solvers

- $\bullet\,$ All solvers use the same syntax:
 - [t,N]=ode23(@odefile, t, N0, {options, params ...})
 - odefile is the name of a function that implements f
 function f=odefile(t, N, {params}), f is a column vector
 - t is either [start time, end time] or a vector of times where you want $\ensuremath{\text{N}}$
 - N0= initial conditions
 - options control how solver works (defaults or okay)
 - params= parameters to be passed to odefile

Example: Lorenz equations

• Simplified model of convection cells

$$\begin{array}{rcl} \frac{dx}{dt} & = & \sigma(y-x) \\ \frac{dy}{dt} & = & rx-y-xz \\ \frac{dz}{dt} & = & xy-bz \end{array}$$

• In this case, N is a vector =[x,y,z] and f must return a vector =[x',y',z']

-			
-			
-			
-			
_			
_			