
1

Ordinary Differential
Equations

Outline

• Announcements:
– Homework II: Solutions on web
– Homework III: due Wed. by 5, by e-mail

• Homework II
• Differential Equations
• Numerical solution of ODE’s
• Matlab’s ODE solvers

Homework II

• Good job
• Something I learned:

– logical addressing
• I=some logical test of A
• A(logical(I)) are elements in A where true
• mean(data(data~=-999))

• nargin
• Final FourierStuff

2

nargin

• Matlab functions can be polymorphic--the
same function can be called with different
numbers and types of arguments
– Example: plot(y), plot(x,y), plot(x,y,’rp’);

• In a function, nargin and nargout are the
number of inputs provided and outputs
requested by the caller.

• Even more flexibility using vargin and vargout

nargin

• Simplest application of nargin is to override
default parameters
function [x,y]=ll2xy(lat,lon,ref,R)
if(nargin<3)

R= 6378.155*1000;
ref=[42.3493, -71.0264]; %default ref is Boston

elseif(nargin==4)
if(length(ref)~=2)%ref must be R

R=ref;
ref=[42.3493, -71.0264]; %default ref is Boston

else
R= 6378.155*1000;

end
end

The Final (Fourier) Analysis

• Use myfft to get spectrum (a & b)

myfft.m

FourierMat.m

t,temp a,b,f

a,b,f,tx
(temp)

3

Fourier Analysis

• Spectrum tells you about time series
– dominant frequencies
– underlying statistical processes

• Could use FourierMat to filter data
>>alp=a;blp=b;
>>alp(13:end)=0;blp(13:end)=0;
>>xlp=FourierMat(alp,blp,f,t);

Differential Equations

• Ordinary differential equations (ODE’s)
arise in almost every field

• ODE’s describe a function y in terms of
its derivatives

• The goal is to solve for y

Example: Logistic Growth

• Similar to swan problem on PS3
• N(t) is the function we want (number of

animals)

4

Numerical Solution to ODEs

• In general, only simple (linear) ODEs
can be solved analytically

• Most interesting ODEs are nonlinear,
must solve numerically

• The idea is to approximate the
derivatives by subtraction

Euler Method

Euler Method

• Simplest ODE scheme, but not very
good

• “1st order, explicit, multi-step solver”
• General multi-step solvers:

(weighted mean of f
 evaluated at lots of t’s)

5

Runge-Kutta Methods

• Multi-step solvers--each N is computed from N
at several times
– can store previous N’s, so only one evaluation of

f/iteration

• Runge-Kutta Methods: multiple evaluations of
f/iteration:

Matlab’s ODE solvers

• Matlab has several ODE solvers:
– ode23 and ode45 are “standard” RK solvers
– ode15s and ode23s are specialized for “stiff”

problems
– several others, check help ode23 or book

• All solvers use the same syntax:
– [t,N]=ode23(@odefile, t, N0, {options, params …})

• odefile is the name of a function that implements f
– function f=odefile(t, N, {params}), f is a column vector

– t is either [start time, end time] or a vector of times
where you want N

– N0= initial conditions
– options control how solver works (defaults or okay)
– params= parameters to be passed to odefile

Matlab’s ODE solvers

6

Example: Lorenz equations

• Simplified model of convection cells

• In this case, N is a vector =[x,y,z] and f
must return a vector =[x’,y’,z’]

