
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline

- Announcements:
- Homework II: Solutions on web
- Homework III: due Wed. by 5, by e-mail
- Homework II
- Differential Equations
- Numerical solution of ODE's
- Matlab's ODE solvers

Homework II

- Good job
- Something I learned:
- logical addressing
- I=some logical test of A
- A(logical(I)) are elements in A where true
- mean(data(data~=-999))
\qquad
\qquad
\qquad
\qquad
\qquad
- nargin
- Final FourierStuff \qquad
\qquad

nargin

- Matlab functions can be polymorphic--the same function can be called with different numbers and types of arguments
- Example: plot(y), plot(x, y), $\operatorname{plot}\left(x, y,{ }^{\prime} r p^{\prime}\right)$;
- In a function, nargin and nargout are the number of inputs provided and outputs requested by the caller.
- Even more flexibility using vargin and vargout

nargin

- Simplest application of nargin is to override default parameters
function $[x, y]=112 x y(l a t$, lon, ref, R)
if(nargin<3)
$\mathrm{R}=6378.155 * 1000$;
ref=[42.3493, -71.0264]; \%default ref is Boston
elseif(nargin==4)
(length(ref) $\sim=2$) \%ref must be R ref=[42.3493, -71.0264]; \%default ref is Boston

$R=6378.155 * 1000$
end
end

The Final (Fourier) Analysis

- Use myfft to get spectrum (a \& b)

Fourier Analysis

- Spectrum tells you about time series
- dominant frequencies
- underlying statistical processes
- Could use FourierMat to filter data
>>alp=a;blp=b;
>>alp(13:end)=0;blp(13:end)=0;
>>x|p=FourierMat(alp,blp,f,t);

Differential Equations

- Ordinary differential equations (ODE's) arise in almost every field
- ODE's describe a function y in terms of its derivatives
- The goal is to solve for y

Example: Logistic Growth

- Similar to swan problem on PS3
- $N(t)$ is the function we want (number of animals)

$$
\frac{d N}{d t}=r N\left(\frac{K-N}{K}\right)
$$

Numerical Solution to ODEs

- In general, only simple (linear) ODEs can be solved analytically
- Most interesting ODEs are nonlinear, must solve numerically
- The idea is to approximate the derivatives by subtraction
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Euler Method	
$\frac{d N}{d t}$	$=f(N, t)$
$\frac{N_{t+1}-N_{t}}{\Delta t}$	$=f\left(N_{t}, t\right)$
N_{t+1}	$=N_{t}+\Delta t * f\left(N_{t}, t\right)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Euler Method

- Simplest ODE scheme, but not very good
- "1st order, explicit, multi-step solver"
- General multi-step solvers:
$N_{t+1}=N_{t}+\Delta t *$ (weighted mean of f evaluated at lots of t 's)

Runge-Kutta Methods

- Multi-step solvers--each N is computed from N at several times \qquad
- can store previous N's, so only one evaluation of $\mathrm{f} /$ iteration
- Runge-Kutta Methods: multiple evaluations of f/iteration:

$$
\begin{aligned}
a & =\Delta t f\left(N_{t}, t\right) \\
b & =\Delta t f\left(N_{t}+a / 2, t+\Delta t / 2\right) \\
c & =\Delta t f\left(N_{t}+b / 2, t+\Delta t / 2\right) \\
d & =\Delta t f\left(N_{t}+c, t+\Delta t\right) \\
N_{t+1} & =N_{t}+1 / 6 *(a+2 b+2 c+d)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Matlab's ODE solvers

- Matlab has several ODE solvers:
- ode23 and ode45 are "standard" RK solvers
- ode15s and ode23s are specialized for "stiff" problems \qquad
- several others, check help ode23 or book

Matlab's ODE solvers

- All solvers use the same syntax:
- $[\mathrm{t}, \mathrm{N}]=$ ode23(@odefile, t, NO, \{options, params ...\})
- odefile is the name of a function that implements f - function $\mathrm{f}=$ odefile($\mathrm{t}, \mathrm{N},\{$ params $\}$), f is a column vector
- t is either [start time, end time] or a vector of times where you want N
- $\mathrm{NO}=$ initial conditions
- options control how solver works (defaults or okay)
- params= parameters to be passed to odefile

Example: Lorenz equations

- Simplified model of convection cells

$$
\begin{aligned}
& \frac{d x}{d t}=\sigma(y-x) \\
& \frac{d y}{d t}=r x-y-x z \\
& \frac{d z}{d t}=x y-b z
\end{aligned}
$$

- In this case, N is a vector $=[x, y, z]$ and f must return a vector $=\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$

