
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Outline

- Announcements:
- Homework II: due Today. by 5, by e-mail - Discuss on Friday.
- Homework III: on web \qquad
- Random Numbers
- Example--Small Worlds \qquad
\qquad
\qquad

Random Numbers

- Computers are deterministic

Therefore, computers generate "pseudo-random" numbers

- Matlab's random numbers are "good"
- "The uniform random number generator in MATLAB 5 uses a lagged Fibonacci generator, with a cache of 32 floating point numbers, combined with a shift register random integer generator.
- http://www.mathworks.com/support/solutions/data/8542. shtml

Random functions

- rand (m, n) produces m-by-n matrix of uniformly distributed random numbers $[0,1]$
- randn (m, n) produces random numbers normally distributed with mean=0 and $\operatorname{std}=1$
- randperm(n) is a random permutation of integers [1:n] - I=randperm(n); B=A(I,:) would scramble the rows of A
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Seeds

- Random number generators are usually recurrence equations:
- $r(n)=F(r(n-1))$
- Must provide an initial value $r(0)$
- Matlab's random functions are seeded at startup, but THE SEED IS THE SAME EVERY TIME!
- Initialize seed with rand('state', sum(100*clock))
- How would you ensure rand is always random?

It's a Small, Small World

- Watts \& Strogatz (1998) Nature, 393:440-442
- Complicated systems can be viewed as graphs \qquad
- describe how components are connected

Example: Six Degrees of Kevin Bacon

- Components (vertices) are actors
- Connections (edges) are movies
- Hypothesis: 6 or fewer links separate Kevin Bacon from all other actors.

Other Systems

- Power Grid
- Food Webs
- Nervous system of Caenorhabditis elegans
- Goal is to learn about these systems by studying their graphs
- Many of these systems are "Small Worlds"--only a few links separate any two points

Watts \& Strogatz

- Can organize graphs on a spectrum from ordered to random \qquad
- How do graph properties change across this spectrum?
- L=mean path length (\# links between points)
- C=cluster coefficient ("lumpiness")
- Used a Monte-Carlo approach--created lots of graphs along spectrum and computed L and C

Watts \& Strogatz

- Creating the graphs
- $\mathrm{n}=$ \# of vertices, $\mathrm{k}=$ number of edges/vertex
- Start with a regular ring lattice and change edges at random with probability p
- For every p, compute stats for many graphs

Small Worlds in Matlab

- $G=$ createlattice(n,k,p)
- creates a lattice--represented as a sparse matrix
- $[\mathrm{L}, \mathrm{C}]=$ latticestats(G)
- computes the path length and clustering stats
- [L,C]=SmallWorldsEx(n,k,P,N)
- Creates N graphs for every $P(j)$ and saves the mean stats in $\mathrm{L}(\mathrm{j})$ and $\mathrm{C}(\mathrm{j})$
- plotlattice(G)
- Plots a lattice

