CS381	Solution to First Mid Term	Friday Oct 1, 2004
Fall 2004		Hollister B14 9:05-9:55

First Mid Term Solutions

1. Write a regular expression denoting all strings in which every third symbol is a 0. Some strings in the set are ε , 010, 1101101, 0001101001, etc

$$((0+1)(0+1)0)^*(\varepsilon+0+1+(0+1)(0+1))$$

2. Express the set

$$\left\{ 0^n 10^{n-1} 10^{n-2} 1 \cdots 1000100101 \mid n \ge 1 \right\}$$

in terms of intersection, \cup , \bullet , and * and the set $\{0^{i+1}10^i1 | i \ge 1\}$.

$$\left\{0^{i+1}10^{i}1 \mid i \ge 1\right\} * (\varepsilon + 01) \cap 0 * 1 \left\{0^{i+1}10^{i}1 \mid i \ge 1\right\} (\varepsilon + 01)$$

3. Use the pumping lemma to prove that $L = \{a^i b^j | i \le j\}$ is not regular.

Assume that $L = \{a^i b^j | i \le j\}$ is regular and let n be the integer of the pumping lemma. Select the string $w = a^n b^n$. Then w can be written xyz where $|xy| \le n$ and $xy^i z$ is in the set L for all i. Since $|xy| \le n$, y must consist of all a's. Thus $xy^2 z$ has more a's than b's and hence is not in the set L, a contradiction. Thus our assumption that the set L was regular is false. We conclude that L is not a regular set.

4. Use homomorphism, inverse homomorphisms and intersection with regular sets to express the set obtained from an arbitrary set L by deleting in each string every 1 appearing in an even numbered position and preceded by a 0. Let $h_1(0) = 0$, $h_1(1) = 1$, $h_1(\hat{1}) = 1$. Let R be the regular set $(00+0\hat{1}+10+11)^*(\varepsilon+0+1)$. Let $h_2(0) = 0$, $h_2(1) = 1$, $h_2(\hat{1}) = \varepsilon$. The desired set is $h_2(h_1^{-1}(L) \cap R)$.