This is a $2\frac{1}{2}$ hour in class closed book exam. All questions are straightforward and you should have no trouble doing them. Please show all work and write legibly. Thank you.

- 1. Is it decidable for regular sets R_1 and R_2 whether $R_1 \subseteq R_2$? Justify your answer. **Answer**: $R_1 \subseteq R_2$ iff $R_1 \cap \overline{R}_2 = \Phi$. But $R_1 \cap \overline{R}_2$ is a regular set and emptiness for regular sets is decidable.
- 2. Write a context-free grammar for the compliment of $\{ww \mid w \in (a+b)^*\}$.

Answer:

$$S \rightarrow AB \mid BA \mid O$$

 $A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid a$
 $B \rightarrow aBa \mid aBb \mid bBa \mid bBb \mid b$
 $O \rightarrow aaO \mid abO \mid baO \mid bbO \mid a \mid b$

3. Let $L \subseteq (a+b)^*$ be a context-free language. In each string interchange the order of a and b in each occurrence of ab. Is the resulting language context free? Give a proof of your answer.

Examples

$$aabb \rightarrow abab$$
 $ababab \rightarrow bababa$
 $bababa \rightarrow bbabaa$

Answer:

Define h_1 , h_2 , and R as follows

$$h_1(a) = a$$
 $h_2(a) = a$
 $h_1(b) = b$ $h_2(b) = b$
 $h_1(c) = ab$ $h_2(c) = ba$

$$R = (a+b+c)^* - (a+b+c)^* ab(a+b+c)^*$$

Then the desired set is $h_2(h_1^{-1}(L) \cap R)$. The class of cfl's is closed under homomorphisms. inverse homomorphisms, and intersection with a regular set. Thus $h_2(h_1^{-1}(L) \cap R)$ is a cfl.

4. If one can list the elements of a set in order, then must the set be recursive? Prove your answer.

Answer: Yes. If the set is finite then it clearly is recursive. Assume that the set is infinite. To determine if x is in the set enumerate elements of the set in order until either

x appears or a string beyond x in the ordering appears. Since the set is infinite one or the other most occur thus determining if x is or is not in the set.

5. Is the class of Turing machines that accept the empty set recursive, r.e. or not r.e.? Justify your answer.

Answer: Not r.e. The class of Turing machines that accept non empty sets can be enumerated. The set is not recursive since non empty is a non trivial property of the r.e. sets. Thus its complement, the class of Turing machines that accept non empty sets, cannot be r.e.