1. \(L : \{ ww^R \mid w \in (a+b)^* \} \) is not a regular set.

Suppose \(L \) is regular. Then there exists a constant \(n \) such that for every string \(w \) in \(L \) such that \(|w| \geq n \), we can break \(w \) into three strings \(w = xyz \) such that:

\[
y \neq \epsilon \\
|xy| \leq n
\]

For all \(k \geq 0 \), the string \(xy^kz \) is also in \(L \).

Let \(w \) be strings of the form \(a^n b b a^n \). Because \(|xy| \leq n \), the substring \(xy \) must be in the form \(a^m \), we can pump \(y \) up and let \(k = 2 \), then the \(w \) becomes \(a^{n + |y|} b b a^n \).

This is not in the language \(L \), therefore we proved \(L \) not regular by the pumping lemma.

2. We can express this language as \(C_1 \cap C_2 \) where,

\(C_1 : \{ a^m b c^m d^m \mid n \geq 1, m \geq 1 \} \)

Grammar:

\[
S \rightarrow aMbcNd \\
M \rightarrow aMb | \epsilon \\
N \rightarrow cNd | \epsilon
\]

\(C_2 : \{ a^* b^n c^n d^* \mid n \geq 1 \} \)

Grammar:

\[
S \rightarrow aSd | bBc \\
B \rightarrow bBc | \epsilon
\]

Because \(C_1 \) forces \(a \) and \(b \), \(c \) and \(d \) to be the same length, and \(C_2 \) forces \(b \) and \(c \) to be the same length, the intersection of the two language has \(a, b, c, d \) all be the same length.
3. We can express this language as $C_1 \cap C_2$ where,

C_1: $(0^n10^{n+1}1)^*(0^*1 + \varepsilon)$
Grammar:
$$S_1 \rightarrow 0B01S \mid E \mid \varepsilon$$
$$E \rightarrow 0E \mid 1$$
$$B \rightarrow 0B0 \mid 1$$

C_2: $01(0^n10^{n+1}1)^*(0^*1 + \varepsilon)$
Grammar:
$$S_2 \rightarrow 01S_1$$

C_1 forces number of zeros in blocks 1-2, 3-4, 5-6 ... to be incremental by 1. C_2 forces number of zeros in block 2-3, 4-5, 6-7 ... to be incremental by 1, and forces the string to start with 01. So the intersection of two languages starts with 01 and increments by 1 zero with each subsequent blocks.

4. Grammar:
$$S \rightarrow (S) \mid SS \mid \varepsilon$$

5. To convert many-state PDA (here we all it P_m) or one-state PDA (P_s), we can encode the states information in P_m in the stack symbols of P_s. All stacks symbols in P_s can be written in the form $[pXq]$, where p and q are the states information that came from P_m. If $[pXq]$ is on the top of the stack, it indicates that we are currently in state p, and if this symbol is popped, we guess that we would be in state q. For example,

if P_m contains
$$\delta(p,a,X) = \{(q,\varepsilon)\}$$

Then in P_s, it translates to
$$\delta(s,a,[pXq]) = \{(s,\varepsilon)\}, s \text{ is the only state in } P_s$$

Is the state we guessed does not match the state of the symbol on top of the stack the symbol can never be deleted.

6. $L : \{a^ib^jc^k \mid i < k \text{ and } j > k\}$

According to the pumping lemma, if L is a CFL: There exists a constant n such
that if \(z \) is any string in \(L \) such that \(|z| \) is at least \(n \), then we can write \(z = uvwxy \), and:

\[|vwx| \leq n \]

\[vx \neq \epsilon \]

for all \(i \geq 0, xv^ixy \) is in \(L \).

We let \(z \) be all strings of the form \(a^n b^{n+2} c^{n+1} \), this is in the language \(L \). And to meet the three conditions above, the substring \(vwx \) can be of the form:

\(a^+, a^+b^+, b^+, b^+c^+ \) or \(c^+ \).

We look at each case individually.

i. \(a^+, a^+b^+ \):

In these two cases, \(v \) has to contain some number of \(a \), so if we pump up, the length of \(a \) will be the same or exceed the length of \(c \).

ii. \(b^+ \):

In this case, \(v \) and \(x \) must both be bs, so if we pump down, \(b \) will be the same length as \(c \) or less.

iii. \(b^+c^+, c^+ \):

In this case, \(x \) has to contain some number of \(c \), so if we pump down, the length of \(c \) will be the same or less than the length of \(a \).

We have shown that \(z \) cannot be pumped, therefore \(L \) is not CFL.