Convert the following CFG to a PDA

\[S \rightarrow aAA \]
\[A \rightarrow aS \mid bS \mid a \]

The PDA \(P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \) is defined as

\[Q = \{ q \} \]
\[\Sigma = \{ a, b \} \]
\[\Gamma = \{ a, b, S, A \} \]
\[q_0 = q \]
\[Z_0 = S \]
\[F = \{ \} \]

And the transition function is defined as:

\[\delta(q, \epsilon, S) = \{(q, aAA)\} \]
\[\delta(q, \epsilon, I) = \{(q, aS), (q, bS), (q, a)\} \]
\[\delta(q, a, a) = \{(q, \epsilon)\} \]
\[\delta(q, b, b) = \{(q, \epsilon)\} \]
Homework 9

Exercise 6.3.3 Solutions

In the following, S is the start symbol, e stands for the empty string, and Z is used in place of Z_0.

1. $S \rightarrow [qZq] \mid [qZp]$

 The following four productions come from rule (1).

2. $[qZq] \rightarrow 1[qXq][qZq]$
3. $[qZq] \rightarrow 1[qXp][pZq]$
4. $[qZp] \rightarrow 1[qXq][qZp]$
5. $[qZp] \rightarrow 1[qXp][pZp]$

 The following four productions come from rule (2).

6. $[qXq] \rightarrow 1[qXq][qXq]$
7. $[qXq] \rightarrow 1[qXp][pXq]$
8. $[qXp] \rightarrow 1[qXq][qXp]$
9. $[qXp] \rightarrow 1[qXp][pXp]$

 The following two productions come from rule (3).

10. $[qXq] \rightarrow 0[pXq]$
11. $[qXp] \rightarrow 0[pXp]$

 The following production comes from rule (4).

12. $[qXq] \rightarrow e$

 The following production comes from rule (5).

13. $[pXp] \rightarrow 1$

 The following two productions come from rule (6).

14. $[pZq] \rightarrow 0[qZq]$
15. $[pZp] \rightarrow 0[qZp]$
Exercise 7.2.1(b)

We will use L to denote the language \(\{a^n b^n c^i \mid i \leq n\} \). For any constant \(n > 0 \), take a string to be \(z = a^n b^n c^n \). Clearly \(z \in L \). Now the string will be decomposed into \(z = uvwxy \), with \(vwx \neq \varepsilon \) and \(|vwx| \leq n \). We then have several cases to consider:

- \(vwx \in a^+ \)
 Pump up, and we will have more a’s than b’s. It does not belong to L.
- \(vwx \in b^+ \)
 Pump up, and we will have more b’s than a’s. It does not belong to L.
- \(vwx \in c^+ \)
 Pump up, and we will have more c’s than a’s and b’s. It does not belong to L.
- \(vwx \in a^+ b^+ \)
 Pump down, and we will have less a’s and b’s than c’s. It does not belong to L.
- \(vwx \in b^+ c^+ \)
 Pump up, and we will have more c’s than a’s. It does not belong to L.

Note that it is impossible to have \(vwx \in a^+ b^+ c^+ \), since \(|vwx| \leq n \). So we have finished the proof that L is not a CFL.

Exercise 7.2.1(d)

Let \(n \) be the pumping-lemma constant and consider \(z = 0^n 1^{n^2} \). We break \(Z = uvwxy \) according to the pumping lemma. If \(vwx \) consists only of 0's, then \(uwy \) has \(n^2 \) 1's and fewer than \(n \) 0's; it is not in the language. If \(vwx \) has only 1's, then we derive a contradiction similarly. If either \(v \) or \(x \) has both 0's and 1's, then \(uv^iwx^{i+1}y \) is not in \(0^*1^* \), and thus could not be in the language.

Finally, consider the case where \(v \) consists of 0's only, say \(k \) 0's, and \(x \) consists of \(m \) 1's only, where \(k \) and \(m \) are both positive. Then for all \(i \), \(uv^{i+1}wx^{i+1}y \) consists of \(n + ik \) 0's and \(n^2 + im \) 1's. If the number of 1's is always to be the square of the number of 0's, we must have, for some positive \(k \) and \(m \): \((n+ik)^2 = n^2 + im \), or \(2ink + i^2k^2 = im \). But the left side grows quadratically in \(i \), while the right side grows linearly, and so this equality for all \(i \) is impossible. We conclude that for at least some \(i \), \(uv^{i+1}wx^{i+1}y \) is not in the language and have thus derived a contradiction in all cases.
Exercise 7.2.1(e)

We will use \(L \) to denote the language \(\{ a^n b^n c^i \mid n \leq i \leq 2n \} \). For any constant \(n > 0 \), take a string to be \(z = a^n b^n c^{2n} \). Clearly \(z \in L \). Now the string will be decomposed into \(z = uvwxy \), with \(vwx \neq \varepsilon \) and \(|vwx| \leq n \). We then have several cases to consider:

- \(vwx \in a^+ \)
 Pump up, and we will have more a’s than b’s. It does not belong to \(L \).

- \(vwx \in b^+ \)
 Pump up, and we will have more b’s than a’s. It does not belong to \(L \).

- \(vwx \in c^+ \)
 Pump up, and we will have more \(2n \) c’s. It does not belong to \(L \).

- \(vwx \in a^+ b^+ \)
 Pump down, and we will have \(n-1 \) a’s and \(n-1 \) b’s but still \(2n \) c’s which is not in the range. It does not belong to \(L \).

- \(vwx \in b^+ c^+ \)
 Pump up, and we will have more b’s and a’s. It does not belong to \(L \).

Note that it is impossible to have \(vwx \in a^+ b^+ c^+ \), since \(|vwx| \leq n \). So we have finished the proof that \(L \) is not a CFL.
CS 381 Homework #9 Problem 4

Question 7.4.3

a)

\[
\begin{array}{c|c|c|c}
{S, A, C} & {S, A} & {S, C} & {S, A, C} \\
\{B\} & {B} & {S, C} & {A, C} \\
\{B\} & {S, C} & {B} & {B} \\
\{S, C\} & {S, A} & {S, C} & {S, A} \\
\{A, C\} & {B} & {A, C} & {B} \\
\{A, C\} & {B} & {A, C} & {B} \\
\end{array}
\]

Since S is in the top left box, \textit{ababa} is in the language.

b)

\[
\begin{array}{c|c|c|c}
\{S, C\} & \{S, C\} & \{S, A, C\} & \{S, C\} \\
\{A, S, C\} & \{A, S\} & {B} & {B} \\
\emptyset & \{A, S, C\} & \{A, S\} & {B} \\
\{A, S\} & {B} & {B} & {S, C} \\
\{B\} & {A, C} & {A, C} & {A, C} \\
\end{array}
\]

Since S is in the top left box, \textit{baaab} is in the language.

c)

\[
\begin{array}{c|c|c|c}
\{S, A, C\} & \{S, A\} & \{S, A, C\} & \{S, A, C\} \\
\{S, A, C\} & \{S, A\} & \{S, A, C\} & \{S, A\} \\
\{B\} & {B} & \{S, A, C\} & \{S, A, C\} \\
\{B\} & {S, C} & \{S, A\} & \{S, A\} \\
\{A, C\} & {A, C} & \{B\} & \{A, C\} \\
\end{array}
\]

Since S is in the top left box, \textit{aabab} is in the language.
Let N_{ijA} denote the number of distinct parse trees for substring $a_i \ldots a_j$ of the input w, starting from variable A (i.e., with A as the root of the parse tree). Note that we are using A here as a metavariable, not any particular variable in G that might have been named A. N_{1nS}, where $n = |w|$ and S the starting variable of G, is the value we are interested in. We can augment the CYK algorithm to compute each N_{ijA} as we compute the corresponding X_{ij}. That is, after computing X_{ij} in CYK, we proceed to compute N_{ijA} for each variable A.

Initially, we set all N_{ijA} to 0.

For the base case, we can compute the first row of N as follows. N_{iiA} is 1 if $A \rightarrow a_i$ is a production of G. Otherwise, N_{iiA} remains 0.

To compute N_{ijA}, $j - i > 0$, we look at each of the pairs $(X_{ii}, X_{i+1,j}), \ldots, (X_{i,j-1}, X_{jj})$ the same way plain CYK did. For each pair, we look at each element of the cross product of that pair. That is, for $(X_{ik}, X_{k+1,j})$, we consider all pairs (B, C) such that $B \in X_{ik}$ and $C \in X_{k+1,j}$. If $A \rightarrow BC$ is a production, we increment N_{ijA} by $N_{ikB} \times N_{k+1,jC}$.

When the algorithm completes, N_{1nS} would contain the solution.

For the special case when $w = \varepsilon$, this algorithm won’t work, but the answer is easy. It’s 1 if $S \rightarrow \varepsilon$ is a production, 0 otherwise.