Problem 1. Consider the CFG G defined by the following productions:

$$S \rightarrow aS \mid Sb \mid a \mid b$$

(a) Prove by induction on the string length that no string in $L = L(G)$ has ba as a substring.

Proof (induction): Let P_n be the statement that no string $x \in L(G)$, $|x| = n$ has the substring ba.

Base Case: $n = 1$. The only strings of length 1 in L are a and b, neither of which has ba as a substring. Therefore, P_n holds for $n = 1$.

Assume P_n holds true for some $n \geq 1$. We want to show that P_{n+1} follows.

Take some string $w \in L$ of length n. Then $S \Rightarrow^* w$. To produce a string of length $n + 1$, we must follow the productions $S \rightarrow aS \rightarrow^* aw$ or $S \rightarrow Sb \rightarrow^* wb$. By the inductive assumption, w has no substring ba. By prepending a or appending b we cannot create the substring ba. Hence P_{n+1} holds true.

Therefore, P_n holds true for all $n \geq 1$, and so no strings in L have the substring ba. □

(b) $L(G) = a^*bb^* + aa^*b^*$, that is, the language of a’s followed by b’s, with at least one a or one b.

Some notes:

• The induction in part (a) could be done as either an induction on the length of the strings in $L(G)$, or as an induction on the length of the sentential

 - in my humble opinion, it was easier to use the proof (as above) using the sentences (the strings in $L(G)$), rather than messing too much with the sentential

• A different approach was to prove a stronger statement: any sentence derived from S

 is of the form a^*b^*; and then show that this implies there is no string with substring ba

• A common error was to write that $L(G) = a^*b^*$. Note that this includes ϵ (the empty string), which simply is not true! The shortest strings in $L(G)$ are a or b.
Problem 2

(a) Let \(L = \{ w \in (a,b)^* : \#a(w) = \#b(w) \} \). Then the following is a grammar for \(L \):

\[
S \rightarrow aSb \mid bSaS \mid \varepsilon
\]

The idea behind this grammar is that if \(w \) is a string in \(L \), then \(w \) is either \(\varepsilon \), begins with \(a \), or begins with \(b \). If it begins with \(a \), we know there has to be a \(b \) somewhere further down the string. In particular, there must be a \(b \) somewhere in the string such that the substring between the starting \(a \) and this \(b \) is another string of \(L \). In other words, the substring between the \(a \) and the \(b \) has balanced numbers of \(a \)'s and \(b \)'s. Here's why: We can keep a tally of the imbalance between \(a \)'s and \(b \)'s in the string. Every time we see an \(a \), we add 1 to the tally. Every time we see a \(b \), we subtract 1. We know that this tally has to eventually be 0 at the end of the string for \(w \) to be in \(L \). If \(w \) starts with an \(a \), this tally starts out positive. At some point, it must return to 0. The first time that happens, we must have just decremented the tally upon seeing a \(b \). This is the \(b \) we want. The substring up to this \(b \) has balanced \(a \)'s and \(b \)'s. Since the rest of the string must preserve the balance between \(a \)'s and \(b \)'s, we know that it has to be itself another member of \(L \). This is the intuition behind the \(aSbS \) production.

Similarly, if \(w \) starts with a \(b \), we can take care of it with the \(bSaS \) production.

(b) Let \(L = \{ \text{rev}(b(n)) \$ b(n + 1) : n \geq 1 \} \). Then the following is a grammar for \(L \):

\[
S \rightarrow 1S0 \mid 0A1 \mid B0
\]
\[
A \rightarrow 0A0 \mid 1A1 \mid B
\]
\[
B \rightarrow 1\$1
\]

The intuition is that we create each string from the left and right ends and move toward the middle. That is, we write \(b(n) \) and \(b(n + 1) \) starting from their least significant bits (which will effectively reverse \(b(n) \) while keeping \(b(n + 1) \) in order). If the least significant bit of \(b(n) \) is 1, then the corresponding bit in \(b(n + 1) \) is 0. The “carry” from this will affect the following bits, until we see a 0 in \(b(n) \). This is captured by the \(S \rightarrow 1S0 \) production, where we are doing addition by 1, remembering that the carry bit will affect the next bit in the numbers. When we finally get to a 0 in \(b(n) \), we can set the corresponding bit in \(b(n + 1) \) to 1, and stop worrying about the carry. This is done with the \(S \rightarrow 0A1 \) production. From there, \(A \) simply produces the same bits on both sides. We stop when we reach the most significant bit, and use a \(A \rightarrow B \) production. Since leading zeros are not allowed, there must be 1’s around the \$ sign, thus \(B \rightarrow 1\$1 \).

There is one special case where the number \(n \) is of the form \(2^k - 1 \). That is, \(b(n) \) is a string of 1’s. This is the only time when \(b(n + 1) \) will be longer than \(b(n) \). We deal with this by the \(S \rightarrow B0 \) production, where we give \(b(n + 1) \) an extra 0. (Note that if we use this production, we won’t be able to use any \(A \) productions, so \(b(n) \) is indeed a string of 1’s.)
Problem 3a. The example \(\{0^n1^n \mid n \geq 1 \} \) is enough. It is easy to see that the following grammar establishes this language to be a symmetric language, while we already know that it is not regular.

\[
S \rightarrow 0S1 | \epsilon
\]

Problem 3b. Let \(L \) be a regular language. Suppose we have a DFA for \(L \) given as \((Q, \Sigma, \delta, F, s)\) where \(Q \) is the set of states, \(\delta \) the transition function etc. Now, define the grammar to be \(G = (N, \Sigma, P, S) \). Define \(N \), the set of non-terminals of our grammar to \(\{S\} \cup Q \times Q \) i.e. of the form \((p, q)\) where \(p, q \in Q \). The terminals of our grammar are symbols of \(\Sigma \). The production rules are of the format

\[
S \rightarrow \epsilon \text{ if } s \in F
\]

\[
S \rightarrow a \text{ if } \delta(s, a) \in F
\]

\[
S \rightarrow a(p', q'b) \text{ if } \delta(s, a) = p' \land \delta(q', b) \in F.
\]

We also have the following productions

\[
(p, p) \rightarrow \epsilon
\]

\[
(p, q) \rightarrow a \text{ if } \delta(p, a) = q
\]

\[
(p, q) \rightarrow a(p', q')b \text{ if } \delta(p, a) = p' \land \delta(q', b) = q.
\]

Correctness follows by simple induction of the following claims.

\[
(p, q) \rightarrow^* w \iff \hat{\delta}(p, w) = q
\]

\[
S \rightarrow^* w \iff \exists f \in F, \hat{\delta}(s, w) = f.
\]

Problem 3c. There are many ways to prove this. Here is one. Suppose, as before, the grammar is \(G = (N, \Sigma, P, S) \). Over a single letter alphabet, the order of the letters do not matter. So we might as well consider the productions to be of the form

\[
A \rightarrow aaB
\]

\[
C \rightarrow \epsilon
\]

\[
D \rightarrow a
\]

1
where A, B, C and D are non-terminals. Let us first convert the rules $A \rightarrow aaB$ to rules of the form $A \rightarrow aB$ by introducing new non-terminals in N, and adding production rules. Now, we can define a FA $M = (Q, \Sigma, \delta, s)$ that has the set of states $Q = N \cup \{f\}$ where f is a new state name that does not appear in N. The transition function is

$$\delta(A, a) = \{B \mid A \rightarrow aB \in P\} \cup \{f \mid A \rightarrow a \in P\}$$

The start state of the automata is $s = S$ and the final states are $F = \{f\} \cup \{S \mid S \rightarrow \epsilon \in P\}$. The proof is again by induction.

$$B \in \hat{\delta}(A, w) \text{ iff } A \rightarrow^* wB$$
$$f \in \hat{\delta}(A, w) \text{ iff } A \rightarrow^* w, w \neq \epsilon$$
$$S \in F \text{ iff } S \rightarrow w \text{ iff } \hat{\delta}(S, \epsilon) \in F,$$
Problem 4. Let \(L = \{(1^i0^j)^j | i, j \geq 0\} \). There are three different ways to create strings in \(L^c \):

1. Begin the string with a 0
2. End the string with a 1
3. Create a string with an unequal number of 1’s followed by 0’s or an unequal number of 0’s followed by 1s

More specifically, we can state (3) as follows: create a string \(1^{x_i}0^{y_i}1^{x_{i+1}}0^{y_{i+1}} \cdots 1^{x_n}0^{y_n} \) such that:

- \(x_i \geq 1, y_i \geq 1 \) for all \(i \)
- some \(x_i \neq y_i \) or some \(y_i \neq x_{i+1} \)

Using these rules, we can then define the following production rules:

<table>
<thead>
<tr>
<th>Production</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S \rightarrow X0U1X</td>
<td>X1V0X</td>
</tr>
<tr>
<td>(A \rightarrow 0A</td>
<td>0)</td>
</tr>
<tr>
<td>(B \rightarrow 1B</td>
<td>1)</td>
</tr>
<tr>
<td>(X \rightarrow 0X</td>
<td>1X</td>
</tr>
</tbody>
</table>
| \(U \rightarrow 1U0 | 1A0 | 1B0 \) | \(11^n00^m, \) where \(n \neq m \),
| \(V \rightarrow 0V1 | 0A1 | 0B1 \) | \(00^n11^m, \) with \(n \neq m \) |

Then the language generated by the grammar above is \(L^c \).

Common Errors:

- Failing to include some of the shorter strings such as \(110 \)
- Including a production rule of the form \(M \rightarrow \epsilon \), which ended up deriving strings from \(L \)
- Creating a production rule \(S \rightarrow XUX \), which allows the \(X \) production rules to balance the number of 1’s and 0’s.

Some recommendations:

- Be careful using \(\epsilon \) as a terminal—you’re often better off using a real symbol as a terminal
- You may need to treat shorter strings as special cases; try to think of all the possible short strings which your CFG may not appropriately handle