Problem 4.2.6 by machine construction

a) Let L be a regular language, and M_L a DFA for L. We will construct a DFA M' for $\text{min}(L)$.

Observe that if $w \in \text{min}(L)$, then M_L on input w ends on some final state. Furthermore, no previous state along the path taken by w through M_L is allowed to be a final state. So to construct M', we simply take M_L, and for each final state, we remove all outgoing transitions (including self-loops), and replace them with a transition to a “trap” state for each possible input symbol. This gives us the desired M'.

b) Let L be a regular language, and M_L a DFA for L. We will construct a DFA M' for $\text{max}(L)$.

Observe that if $w \in \text{max}(L)$, then M_L on input w ends on some final state. Furthermore, from this state, no final state is reachable via one or more transitions. So to construct M', we apply the following algorithm to M_L: Let $M' = M_L$ initially. For each final state q in M_L, we find the set of all states reachable from q via one or more transitions, using depth-first search/breadth-first search/your favorite search algorithm. If there are any final states in this set (including q itself), we make q non-final in M'.

c) Similar to part (b), we can construct M' as follows: Let $M' = M_L$ initially. For every non-final state q in M_L, we find the set of all states reachable from q via one or more transitions. If there are any final states in this set, we make q final in M'.

Alternatively, we can also use a “reverse marking” algorithm: Starting with all of the final states in M_L, we look at the set of all states that can go to one of these final states on one transition. If any of them are non-final, we mark them as final and repeat the process. When no more new states are marked as final in an iteration, we can stop. The resulting DFA is the M' we want.
1. **Problem 2.** Suppose the languages L_1 and L_2 belong to \mathcal{L}. We will show that $L_1 \cup L_2$ belongs to \mathcal{L}. First, because \mathcal{L} is closed under homomorphisms, we can easily assume that L_1 and L_2 are under different alphabets, say Σ and Δ. Now, since \mathcal{L} is closed under concatenation, if we define $L_3 = L_1 \cdot L_2 = \{xy \mid x \in L_1, y \in L_2\}$, then $L_3 \in \mathcal{L}$. Also, if $h : (\Sigma \cup \Sigma) \cup (\Delta \cup \Delta) \to \Sigma \cup \Delta$, be defined as $h(a) = h(a) = a$, for all a, then $h^{-1}(L_3)$ is also in \mathcal{L}. What this does is for each string $w \in L_3$, in order to get $h^{-1}(w)$, we replace each symbol a nondeterministically by either a or \bar{a}. Now, in order to separate out the parts corresponding to L_1 and L_2, we define $L_4 = h^{-1}(L_3) \cap (\Sigma^* \Delta^* + \Sigma^* \Delta^*)$. Note that, what we have done is push the union operation down to the regular languages. Finally, define $L_5 = g(L_4)$ where $g(a) = \varepsilon$ and $g(a) = a$ for all $a \in \Sigma \cup \Delta$. Then, it is easy to check that $g(L_4) = L_1 \cup L_2$.

2. **Problem 3. A:** This statement is false. The counterexample is $\text{binaryA} = 10^*$. This language is obviously regular. But the unaryA corresponding to this is $L = \{0^k \mid \exists m : k = 2^m\}$, which is not regular. The proof that this is not regular can either be done using the pumping lemma, or using a previous problem from the homework 3. Suppose, the DFA accepting the above language has k states. Now, we can exhibit a set of $k+1$ prefixes $x_1 = 0^i$ such that for each pair x_i and x_j there is a string z such that only one of x_i or x_j belongs to the language L. Take $x_i = 0^{2^k-i}$ for $i = 1, \ldots, k+1$. It is clear that for $z = 0^r$, the string x_iz belongs to the language, but the string x_jz does not, for any $j \neq i$.

B: This statement is true. Given a machine accepting the language unaryA, we construct a machine for the language binaryA.

Claim 1 Let $M = (Q, \Sigma, \delta, s, F)$ be the DFA for accepting unaryA. Then we can write Q and δ as follows:

- $Q = \{q_1, \ldots, q_n\} \cup \{r_0, \ldots, r_m\}$ with
- $\delta(q_i, 0) = q_{i+1}$ for $i \in \{0, \ldots, n-1\}$ and $\delta(q_n, 0) = r_0$ and $\delta(r_j, 0) = r_{(j+1) \mod m}$

Proof. the proof of this follows from the fact that M is a DFA and that the language is over an unary alphabet and has to be ultimately periodic. Hence, if we choose n to be the constant after which the length of strings are periodic, then we have our proof.

After this claim, we define our new machine for accepting binaryA based on M, as follows. Define $M' = (Q, \Sigma, \delta', s', F')$, where $\Sigma = \{0, 1\}$, $s' = s$, $F' = F$, and δ' is defined as follows.
Similarly, \(\delta'(q_i, 1) = q_{2i+1} \) if \(2i + 1 \leq n \), else \(\delta(q_i, 1) = r_{(2i+1-1) \mod m} \).

- Similarly we can show the other case when \(\delta'(r_j, 0) = r_{(2j) \mod m} \)
- And, \(\delta'(r_j, 1) = r_{(2j+1) \mod m} \)

As usual, the following claim proves the correctness of our solution.

Claim 2 If \(w \) is the binary representation of number \(i \), then \(\hat{\delta}'(s, w) = \hat{\delta}(s, 0^i) \).

Proof. By induction on the length of \(w \). The base case occurs when \(i = 0 \) and \(w = \epsilon \).

Assume then the claim is proved for \(|w| \leq k \). Let \(w' = w0 \). Then the unary string corresponding to \(w' \) is \(0^{2i} \). Hence, \(\delta'(s, w') = \delta'(\hat{\delta}'(s, w), 0) \). Also, by inductive hypothesis, \(\delta'(s, w') = \delta(s, 0^i) \).

Now we consider two cases.

(a) \(\hat{\delta}'(s, w) = q_i \). If \(2i \leq n \), we have \(\hat{\delta}'(s, w') = q_{2i} = \hat{\delta}(s, 0^{2i}) \). Else, \(\hat{\delta}'(s, w') = r_{(2i-1) \mod m} \).

Again, \(\delta(s, 0^{2i}) = r_{(2i-1) \mod m} \). Hence, the two are equal in this case.

(b) Similarly we can show the other case when \(\hat{\delta}'(s, w) = r_j \) for some appropriate \(j \). Hence the whole proof.

So, the machine \(M' \) does accept the language \textbf{binaryA}, since the start and accepting states remain the same.

3. **Problem 4.** We transform each of the given languages into \(L_1 \) or \(L_2 \) using transformations that preserve regularity. Then, since neither \(L_1 \) nor \(L_2 \) are regular, we will have shown that the given languages are not regular either.

- \(L = \{0^{2i}1^{3i} \mid i \geq 0\} \). Then \(L_1 = h^{-1}(L) \), where \(h \) is defined as \(h(0) = 00 \) and \(h(1) = 111 \). Note that it is not enough to say that \(h(L_1) = L \). We cannot then claim that \(L \) is non-regular, because, there are homomorphisms that transform non-regular languages to regular ones, this is a trivial one \(h(0) = h(1) = \epsilon \).
- \(L = \{ww \mid w \in \{0, 1\}^*\} \). Define \(h \) such that \(h(0) = h(\bar{0}) = 0 \) and \(h(1) = h(\bar{1}) = 1 \). Then, \(L_4 = h^{-1}(L_3) \cap 0^i1^i = \{0^i1^i \mid i \geq 0\} \). Finally, if \(g \) is defined such that \(g(0) = 0 \), \(g(1) = g(\bar{1}) = \epsilon \) and \(g(0) = 1 \), then \(g(L_4) = L_1 \).
- \(L = \{0^i1^j \mid i = j + 50\} \). Here, let \(h(0) = h(\bar{0}) = 0 \), and \(h(1) = 1 \). So, \(L_3 = h^{-1}(L) \cap 0^i\bar{0}501^i = \{0^i\bar{0}501^i \mid i \geq 0\} \). Next, define \(g(0) = 0 \), \(g(1) = 1 \) and \(g(\bar{0}) = \epsilon \). Then, \(L_1 = g(L_3) \).
- \(L = \{0^i1^j2^k \mid i = j \lor j = k\} \). Then, \((L \cap 0^+1^+) \cup \{\epsilon\} = L_1 \).