Problem 3. We define a new type of NFA, that we call \(\text{all}-\text{NFA} \). In this, we can have non-deterministic and \(\varepsilon \)-transitions, but now, a string \(w \) is accepted only if \emph{every} path from the start state on \(w \) leads to an accepting state. Prove that the set of languages accepted by \(\text{all}-\text{NFA} \) are exactly the regular languages.

\textbf{Solution.} Let \(L \) be the set of languages accepted by \(\text{all}-\text{NFA} \), and let \(R \) be the set of regular languages. We wish to show that \(L = R \). Notice that a DFA is a special case of an \(\text{all}-\text{NFA} \). Thus, \(R \subseteq L \). To show that \(L \subseteq R \) we will construct a DFA \(D \) accepting the same language as a given \(\text{all}-\text{NFA} \) \(N = (Q, \Sigma, \delta, q_0, F) \). Let \(D = (2^{Q \cup \{q_{\text{trap}}\}}, \Sigma, \delta', \text{ECLOSE}(q_0), 2^F) \), where \(\delta'(S, x) \) is computed as follows (similar to the \(\varepsilon \)-closure construction):

1. Let \(S = \{q_1, ..., q_k\} \).
2. Let \(\delta^*: Q \cup \{q_{\text{trap}}\} \rightarrow 2^{Q \cup \{q_{\text{trap}}\}} \) be defined as follows:
 \[\delta^*(q, y) = \begin{cases}
 \delta(q, y) & \text{if } q \in Q \text{ and } \delta(q, y) \neq \varnothing, \\
 \{q_{\text{trap}}\} & \text{otherwise.}
 \end{cases} \]
3. Compute \(\bigcup_{i=1}^k \delta^*(q_i, x) \); let this set be \(\{r_1, ..., r_m\} \).
4. Then \(\delta'(S, x) = \bigcup_{j=1}^m \text{ECLOSE}(r_j) \).

Intuitively, this is just the \(\varepsilon \)-closure of the \(\text{all}-\text{NFA} \), except that we must keep track of when a path from the start state is “dropped”. This is why we introduce a special state \(q_{\text{trap}} \). Without this addition, our DFA would mistakenly accept if one of the paths was dropped but all the others reached accepting states.

\textit{Common mistakes.}

- Forgetting to account for the “dropped” paths described above (-3)
- Forgetting to argue that \(R \subseteq L \), i.e., only giving the harder direction of the proof (-3)
- Giving an argument for \(L \subseteq R \) that lacks a construction, e.g., claiming that \text{all}-\text{NFA} are “special cases” of regular NFA (-7)

Uncommon, minor mistakes were penalized by 1 or 2 points.