4. Let $K = \{01, 01001, 010010001, \ldots \}$. We assume that all strings in K start with 01. What we want to find is what looks like a regular expression for \bar{K}, the complement of K.

Note that we can’t actually write down a real regular expression for \bar{K} since this language is not regular (and neither is K itself). This is where the need for L comes in. It will be the only non-regular part of our final expression.

The easy cases: A string w can’t be in K (and thus in \bar{K}) if w

1. begins with 1 ($\Rightarrow 1(0|1)^*$),
2. ends with 0 ($\Rightarrow (0|1)^*0$),
3. begins with 00 ($\Rightarrow 00(0|1)^*$), or
4. is ε.

The more interesting cases (where we make use of L): The key observation is that if we ever see a block of the form 0^i10^j in w, where $j \neq i + 1$, we know w is not in K. This can be expressed using L as $0^*L|L000^*$. A subtle detail is that we need to make sure no more 0s are tacked onto the wrong end of such a block, potentially invalidating our pattern. One possible solution is to write

$$
(0|1)^*(L1|1L00)(0|1)^* | L00(0|1)^*.
$$

So the full expression for \bar{K} is

$$
(0|1)^*(L1|1L00)(0|1)^* | L00(0|1)^* | 1(0|1)^* | (0|1)^*0 | 00(0|1)^* | \varepsilon.
$$