Problem 3

Let \(x \) and \(y \) be strings and let \(L \) be any language. We say that \(x \) and \(y \) are distinguishable by \(L \) if some string \(z \) exists whereby exactly one of the strings \(xz \) and \(yz \) is a member of \(L \). Otherwise, if for every string \(z \), \(xz \in L \) if and only if \(yz \in L \), we say that \(x \) and \(y \) are indistinguishable by \(L \). If \(x \) and \(y \) are indistinguishable by \(L \) we write \(x \equiv_L y \).

(a) Prove that \(\equiv_L \) is an equivalence relation.

Reflexivity want to check: \(x \equiv_L x \).

Let \(xz \in L \). Then \(xz \in L \iff xz \in L \). This is exactly our definition of indistinguishable:

\[x \equiv_L x. \]

Symmetry want to check: if \(x \equiv_L y \) then \(y \equiv_L x \).

Again, by the definition above, if \(x \equiv_L y \) then

\[xz \in L \iff yz \in L \quad \forall z. \]

Since \(\iff \) is itself symmetric, we can switch the implication above to get

\[yz \in L \iff xz \in L. \]

This is just the definition of equivalence for \(y \equiv_L x \), which is our desired result.

Transitivity we need to check: if \(a \equiv_L b \) and \(b \equiv_L c \), then \(a \equiv_L c \).

We once more return to the definition of distinguishable. If \(a \equiv_L b \), then we can write

\[az \in L \Rightarrow bz \in L \text{ and } bz \in L \Rightarrow az \in L \quad \forall z, \]

and similarly for \(b \equiv_L c \),

\[bz \in L \Rightarrow cz \in L \text{ and } cz \in L \Rightarrow bz \in L \quad \forall z. \]

Combining, we get

\[az \in L \Rightarrow bz \in L \Rightarrow cz \in L \quad \forall z \]

\[cz \in L \Rightarrow bz \in L \Rightarrow az \in L \quad \forall z, \]

or \(az \in L \Rightarrow cz \in L \) and \(cz \in L \Rightarrow az \in L \). This is the same as saying \(az \in L \iff cz \in L \) which means that \(a \equiv_L c \). (A simpler proof of transitivity also sufficed.)

Because \(\equiv_L \) is reflexive, symmetric and transitive, \(\equiv_L \) is an equivalence relation. \(\Box \)
(b) Take a regular language L and let $X = \{x_1, \ldots, x_k\}$. Suppose $x_i \not\equiv_L y_i$ for all $i, j \leq k, i \neq j$. Prove a DFA that accepts L must have at least k states.

Suppose M is a DFA which accepts L but has fewer than k states. Then there must be a pair of strings, $x_i, x_j \in X$ such that M is in the same state after reading both x_i and x_j. Equivalently, we can write that $\hat{\delta}(q_0, x_i) = \hat{\delta}(q_0, x_j)$.

Take any string $z \in \Sigma^*$. After reading x_iz, the DFA must be in the same state as after reading x_jz, since it was in the same state before reading z. Hence, M must either accept or reject both x_iz and x_jz.

Since the DFA M always accepts or rejects x_iz and x_jz, we can say

$$x_iz \Leftrightarrow x_jz, \quad \forall z \in \Sigma^*,$$

which means that $x_i \equiv_L x_j$. This contradicts that every pair of strings in X are distinguishable from one another. Hence, M must have at least k states.

A quick note: be careful in treating the start state separately from other states; the start state can often serve more than one purpose.