1. In the following, whenever VALCOMPS is mentioned, we mean the version where every other configuration is reversed.

 (a) This is undecidable. The complement of VALCOMPS(M) for a Turing machine M is a CFL. If it were decidable whether \(L = R \), we can then set \(L = \overline{\text{VALCOMPS}(M)} \), and \(R = \Sigma^* \), and decide whether \(L(M) = \emptyset \).

 (b) This is decidable. Note that \(L \subseteq R \iff L \cap \overline{R} = \emptyset \). Since \(L \cap \overline{R} \) is still a CFL, we can decide whether it’s empty. We just check whether it contains any string of length \(\leq 2n \), where \(n \) is the pumping constant.

 (c) Decidable. \(D = R \iff (D \cap \overline{R} = \emptyset) \land (\overline{D} \cap R = \emptyset) \). Again, \(D \cap \overline{R} \) is still a CFL, and so is \(\overline{D} \cap R \). Note that the latter assertion depends on the fact that \(\overline{D} \) is also a DCFL (cf Homework 9). In part (a), this argument breaks down since \(\overline{L} \) might not be a CFL.

 (d) Undecidable. This is because VALCOMPS(M) is the intersection of two DCFLs, so if we could decide whether \(D \cap D' = \emptyset \), then we can decide whether \(L(M) = \emptyset \).
Problem 2. Show the following theorem: Let P be a property of languages. Define $L_P = \{M \mid L(M) \text{ satisfies } P\}$. P is said to have containment property if for all languages L in P and for all r.e. $L' \supseteq L$, L' is also in P. Show that if P violates the containment property, then L_P is not r.e. Hint. Note that L_r and L_{nr} both violate the containment property.

$L_r = \{M \mid L(M) \text{ is recursive}\}$.

$L_{nr} = \{M \mid L(M) \text{ is non-recursive}\}$.

Solution. Since the property P does not satisfy containment, there must be a machine M_1 and a machine M_2 such that $M_1 \in L_P$, $M_2 \notin L_P$, and $L(M_2) \supseteq L(M_1)$. We do a reduction from $\overline{L_u} = \{<M, w> \mid M \text{ does not accept } w\}$. Given a pair $<M, w>$, we construct a machine M' as follows. M' has two tapes. On input x, M' does the following:

- On one tape it simulates the machine M_1 on input x and accepts if M_1 accepts x.
- On the other tape, M' first starts simulating the machine M on w. If the machine M accepts w, then M' start simulating the machine M_2 on the input x. It accepts if this computation accepts x.

The computations on the two strings are dovetailed, and the result is a OR of the two computations, i.e. x is accepted if either of the tapes say it should be accepted.

So if the machine M does not accept w, then the language of M' is the same as the language accepted by the computation done on the second tape, i.e.

$M \text{ does not accept } w \Rightarrow L(M') = L(M_1)$.

If the machine M does accept w, then

$M \text{ accepts } w \Rightarrow L(M') = L(M_1) \cup L(M_2) = L(M_2)$.

Thus, $M' \in L_P$ iff M does not accept w. Hence this language L_P is not r.e.
Problem 3. We can show that \(\{ M \mid L(M) \cap L_u \neq \emptyset \} \) is r.e. by constructing a Turing machine \(M' \) that accepts this language. Given the description of a Turing machine \(M \), \(M' \) does the following:

Simulate an enumeration machine for \(L_u \) (which we know to be r.e.). Whenever the simulation enumerates a pair \((M'', w'') \), nondeterministically decide whether this pair is in the language \(L(M) \). If we decide it is, we can verify this by simulating \(M \) on \((M'', w'') \), and if it accepts, we know that \(L(M) \cap L_u \) is nonempty.

We can show that \(\{ M \mid L(M) - L_u \neq \emptyset \} \) is not r.e. by a reduction from the set \(\overline{L_u} \). Note that \(\overline{L_u} \) is known to be not r.e. since \(L_u \) is r.e. but not recursive. Given a pair \((M, w) \), we construct a Turing machine \(M' \) that accepts exactly the language \(\{(M, w)\} \). Then \(M' \in \{ M \mid L(M) - L_u \neq \emptyset \} \) iff \((M, w) \notin L_u\) iff \((M, w) \in \overline{L_u}\).
Problem 4. We have an oracle which can test if $L(M)$ is regular for any Turing machine M. Use the oracle to decide if a given machine has a finite language.

Given M as input, we construct a machine M' which accepts $a^{\left|w\right|}b^{\left|w\right|}$ for all $w \in L(M)$. If M' accepts an infinite number of strings then its language is not regular, and a finite language is regular. Hence, the oracle can use $L(M')$ regular $\iff L(M)$ finite.