Problem 5 The induction is over the length of the string x that is taken as an input. The inductive hypothesis is

- $\hat{\delta}(A, x) = A$ if x either ε or x does not have 00 as a substring and ends with 1.
- $\hat{\delta}(A, x) = B$ if x does not have 00 as a substring and ends with 0.
- $\hat{\delta}(A, x) = C$ if x has 00 as a substring.

Base Case: Is when $x = \varepsilon$.

Inductive case: Assume $x = ya$ and the inductive hypothesis holds for y. The three cases are on what the state $\hat{\delta}(A, y)$ is. If this state is C, then x has 00 as a substring since y has it. Also, $\hat{\delta}(A, x) = \hat{\delta}(C, a) = C$. If the state $\hat{\delta}(A, y) = B$, then $y = z0$ for some z and so, $x = z0a$. Again by the induction hypothesis, y does not have 00 as a substring, so x contains 00 only if $a = 0$. But in that case, $\hat{\delta}(A, x) = \hat{\delta}(A, y0) = \hat{\delta}(B, 0) = C$. Else, if $a = 1$, x does not have a 00 substring, and ends with a 1 and accordingly, $\hat{\delta}(A, x) = \hat{\delta}(A, y1) = \hat{\delta}(B, 1) = A$. The last remaining case is when $\hat{\delta}(A, y) = A$, and thus $y = z1$ for some z. Thus x will not have a 00 substring. Furthermore, depending on whether a is 0 or 1, we have that $\hat{\delta}(A, x) = \delta(A, a)$ to be A or B respectively. Hence we satisfy the inductive hypothesis in all three cases.