Hints for #2 (Exercise 9.3.4)

1. To show that a problem is RE, construct a recognizer for it.

2. Suggested approach for part b): Assume that the problem is RE. Then show that the halting problem would be decidable.

The proof would go much like a proof for Rice’s theorem. Given \(M \) and \(x \), and you want to decide whether \(M \) halts on input \(x \), you would construct a second machine \(M' \) that translates the halting (or non-halting) of \(M \) into the property at hand, whether \(L(M') \) is infinite or not.

Note however that you can only choose the translation in one way: \(M \) does not halt on \(x \) \(\iff \) \(L(M') \) is infinite. The other choice, \(M \) does not halt on \(x \) \(\iff \) \(L(M') \) is finite, does not work (why?).

Hint on how to construct such an \(M' \): Instead of simulating \(M \) on \(x \) indefinitely, we would need to stop at some point and accept some strings. Where \(M' \) decides to stop the simulation of \(M \) can depend on it’s own input, say \(w \), and then \(M' \) can decide whether to accept \(w \) based on the results of the simulation. The goal is of course if \(M \) never halts no matter how long it’s simulated, then \(M' \) would accept infinitely many strings, and if \(M \) does halt if simulated long enough, then \(M' \) would accept a finite amount of strings (even if it’s possibly a very large number).