1. 5.1.7.

2. Write a CFG for following languages. Give clear explanations/intuitions about your grammar.

 (a) \(w \in (a+b)^*, \#a(w) = \#b(w) \).

 (b) Let \(b(n) \) denote the binary representation of \(n \geq 1 \), leading zeros omitted. For example, \(b(5) = 101 \) and \(b(12) = 1100 \). Let \(\text{rev}(w) \) be the reverse of the string \(w \). For example, \(\text{rev}(b(12)) = 0011 \). \$ is a symbol not in \(\{0,1\} \). Write a CFG for the following language

 \[\{ \text{rev}(b(n))\$b(n+1) \mid n \geq 1 \} \]

3. A symmetric linear grammar is one for which the productions are of the following form. \(A, B, C \) and \(X \) are non-terminals, \(a \) and \(b \) are terminals (that may or may not be distinct).

 \[
 \begin{align*}
 A & \rightarrow \varepsilon \\
 B & \rightarrow aXb \\
 C & \rightarrow a
 \end{align*}

 A language \(L \) is a symmetric linear language if \(L = L(G) \) for some symmetric linear grammar \(G \).

 (a) Give a symmetric linear language that is not regular.

 (b) Show that all regular languages are symmetric linear languages. \textit{Hint:} This might be trickier than you think. Remember that non-terminals can represent set (or ...) of states.

 (c) Show that all symmetric linear languages over a single letter alphabet are regular.

4. Write down a CFG for the complement of the following language \(\{(1^i0^j) \mid i, j \geq 0 \} \). Here \(w^n \) is a string of \(n \) consecutive \(w \)'s.