1. Prove non-regularity of the following languages.

 (a) \(L = \{0^i \mid i \geq 0\} \).

 (b) \(L = \{w \mid w \in \{0, 1\}^*, w = w^R\} \), where \(w^R \) is the reverse of the string \(w \).

 (c) The set PAREN of balanced parenthesis \(() \). For example, \((()()()) \) belongs to PAREN but \()())(\) does not.

 (d) \(\{0^i w 0^j \mid i, j > 0, w \in \{0, 1\}^*\} \).

2. Prove that if \(A \) is a regular language over \(\Sigma \) and \(\{a, b\} \subseteq \Sigma \), then the following language is also regular.

 \(\{c^n \mid \exists \ w \in A, \#a(w) + \#b(w) = n\} \)

3. 4.2.11.

4. Consider the language \(L = \{a^i b^j c^k \mid i, j, k \geq 0 \land \text{if } i = 1 \text{ then } j = k\} \).

 Prove that \(L \) satisfies the conditions of the pumping lemma, i.e. show that there is a number \(p \) where, if \(s \) is a string of length at least \(p \) in \(L \), then \(s \) may be written as \(s = xyz \) such that

 \begin{itemize}
 \item for each \(i \geq 0 \), \(xy^i z \in L \).
 \item \(y \neq \varepsilon \).
 \item \(|xy| \leq p \).
 \end{itemize}

 Prove that \(L \) is nonregular. Explain why this fact does not contradict the pumping lemma.