Do each problem on a separate set of pages and please remember to write your name, net-id and problem number on the top right hand corner of each page.

1. 4.2.6 from the book using machine constructions.

2. Let \mathcal{L} be a set of languages such that \mathcal{L} is closed under the following operations:

 (a) If L_1, L_2 are in \mathcal{L}, so is $L_1 \cdot L_2 = \{xy | x \in L_1, y \in L_2\}$.
 (b) If L is in \mathcal{L}, so is $L \cap R$ for any regular language R.
 (c) If L is in \mathcal{L}, so are $h(L)$ and $h^{-1}(L)$ where h is a homomorphism and h^{-1} is the inverse homomorphism.

 Show that \mathcal{L} is closed under union i.e. if L_1 and L_2 are in \mathcal{L}, then $L_1 \cup L_2$ is too.

3. For A to be a set of natural numbers, define

 \[
 \text{binary}A = \{\text{binary representation of number of } A \} \subseteq \{0, 1\}^* \\
 \text{unary}A = \{\text{unary representation of number of } A \} \subseteq \{0\}^*
 \]

 For example, if $A = \{2, 3, 5\}$, $\text{binary}A = \{10, 11, 101\}$ and $\text{unary}A = \{00, 000, 00000\}$.

 One of the following statements is true and the other is false. State which is which and prove.

 (a) $\forall A$, if $\text{binary}A$ is regular, then $\text{unary}A$ is regular.
 (b) $\forall A$, if $\text{unary}A$ is regular, then $\text{binary}A$ is regular.

4. For this question assume that the following two languages L_1 and L_2 are not regular.

 \[
 L_1 = \{0^i1^i | i \geq 0\} \\
 L_2 = \{0^i10^i | i \geq 0\}
 \]

 Assuming the closure properties of regular languages, under union, intersection, closure and homomorphisms and its inverse, show that none of the following languages are regular. \textit{Hint}: Show that if they were regular, then L_1 or L_2 would be regular.
(a) \(\{0^{2i}1^{3i} \mid i \geq 0\} \).
(b) \(\{ww \mid w \in \{0,1\}^*\} \).
(c) \(\{0^i1^j \mid i = j + 50\} \).
(d) \(\{0^i1^j2^k \mid i = j \lor j = k\} \).