Exercise 9.3.5

Let \(L \) be the language described in problem, we will first show that it is a RE, and then show that it is not recursive.

- **\(L \) is RE**

 We need to construct a TM \(M \) to accept \(L \). The idea is to simulate \(M_1 \) and \(M_2 \). However, we do not know whether \(L(M_1) \) or \(L(M_2) \) are recursive or not, so we cannot simply enumerate every string and feed it into \(M_1 \) and \(M_2 \) to see whether it is accepted or not. A feasible way is to enumerate the upper bound of running time of \(M_1 \) and \(M_2 \). We enumerate \(i = 1, 2, \ldots, \) and for every \(i \), execute \(M_1 \) and \(M_2 \) on all the strings \(s_1, s_2, \ldots, s_i \) each for at most \(i \) steps. There is also a counter in \(M \), keeping the number of different strings that are accepted by \(M_1 \) and \(M_2 \). When the counter reaches \(k \), \(M \) halts and accepts \((M_1, M_2, k) \). If \(|L| \geq k \), TM \(M \) will definitely halt in finite time and answer “yes”. So \(L \) is RE.

- **\(L \) is not recursive**

 We want to reduce \(L_{\text{ne}} \) to \(L \). Given any TM \(M \), such that \(L(M) = L \), we can construct a TM \(M' \) as follows:

 The input to \(M' \) is a code of some TM \(M'' \), we feed \((M'', M'', 1) \) into the given TM \(M \). If \(M \) accepts \((M'', M'', 1) \), then \(M' \) accepts \(M'' \); if \(M \) rejects, then \(M' \) rejects; if \(M \) runs forever, \(M' \) runs forever. It is easy to see that \(M' \) is indeed a TM for \(L_{\text{ne}} \). If \(L \) were recursive, we could guarantee \(M \) to halt on any input, which suggested that \(M' \) were guaranteed to halt, and therefore \(L_{\text{ne}} \) were recursive. Here comes the contradiction, since \(L_{\text{ne}} \) is not recursive. So we conclude that \(L \) is not recursive.