Exercise 9.2.4

First observe that any proof that one of the languages is recursive generalizes to each L_i. So let’s prove L_1 to be recursive.

By the construction in Exercise 9.2.6 (a), we know the RE languages are closed under set union. This means the union of L_2, L_3, ..., L_k yields an RE language. This resulting language is the complement of L_1. Theorem 9.4 states that if a language and its complement are both RE, then both languages are also recursive. Thus we conclude L_1 to be recursive.

There is an alternative solution found on the textbook’s website. Take TM’s M_1, M_2, ..., M_K for each of the languages L_1, L_2, ..., L_K, respectively. Design a TM M with k tapes that accepts L_1 and always halts. M copies its input to all the tapes and simulates M_i on the ith tape. If M_i accepts, then M accepts. If any of the other TM’s accepts, M halts without accepting. The problem statement (parts 1 and 2) assures that every string appears in exactly one of the languages so we know exactly one of the M_i will accept. Therefore M is sure to halt and we conclude that L_1 is recursive.