7.2.1 e, f

Use the CFL pumping lemma to show that each of the following languages is not context-free:

e) \{a^n b^i c^j \mid n \leq i \leq 2n \}

1. Pick \(L = \{a^n b^i c^j \mid n \leq i \leq 2n \} \)
2. The demon (our opponent) gets to pick \(n \)
3. We pick \(z = a^n b^i c^j \)
4. The demon gets to break \(z \) into \(uvwx \) s.t. \(|vwx| \leq n\) and \(vx \neq \epsilon \)
5. We “win” the game by picking \(i \) and showing that \(uv^i wx^i y \) is not in \(L \)

\(vwx \in a^+ \)
 Pick \(i = 2 \). Then \(z = a^{n+|vx|} b^n c^n \notin L \)

\(vwx \in b^+ \)
 Pick \(i = 2 \). Then \(z = a^n b^{n+|vx|} c^n \notin L \)

\(vwx \in c^+ \)
 Pick \(i = 0 \). Then \(z = a^n b^n c^{n-|vx|} \notin L \)

\(vwx \in a^+ b^+ \)
 Pick \(i = 2 \). Then \(z = a^p b^q c^n \), where \(p + q = 2n + |vx| \). At least one \(a \) was added so \(p > n \), which means there are more \(a \)'s than \(c \)'s, so \(z \notin L \)

\(vwx \in b^+ c^+ \)
 Pick \(i = 0 \). Then \(z = a^n b^p c^q \), where \(p + q = 2n - |vx| \). At least one \(b \) was removed so \(p < n \), which means there are more \(a \)'s than \(b \)'s, so \(z \notin L \)

f) \{wwRw \mid w \text{ is a string of 0's and 1's} \}

1. Pick \(L = \{wwRw \mid w \text{ is a string of 0's and 1's} \} \)
2. The demon gets to pick \(n \)
3. We pick \(w = 0^n 1^n \), so \(z = 0^n 1^n 1^n 0^n 0^n 1^n = 0^n 1^{2n} 0^{2n} 1^{2n} \)
4. The demon gets to break \(z \) into \(uvwx \) s.t. \(|vwx| \leq n\) and \(vx \neq \epsilon \)
5. We “win” the game by picking \(i \) and showing that \(uv^i wx^i y \) is not in \(L \)

\(vwx \in 0^+ \)
 Pick \(i = 0 \). Then either \(z = 0^{n-|vx|} 1^{2n} 0^{2n} 1^n \) or \(z = 0^n 1^{2n} 0^{2n-|vx|} 1^n \). In either case the number of 0’s in \(z \) is strictly less than the number of 1’s, so \(z \notin L \).
$\forall vwx \in 1^+$

Pick $i = 0$. Then either $z = 0^n 1^{2n-|vx|} 0^{2n} 1^n$ or $z = 0^n 1^{2n} 0^{2n} 1^{n-|vx|}$. In either case the number of 0’s in z is strictly greater than the number of 1’s, so $z \not\in L$.

$\forall vwx \in 0^+1^+$

Pick $i = 0$. Then either $z = 0^p 1^n q 0^{2n} 1^n$ or $z = 0^{2n} 1^n 0^p 1^{n+q}$, where $p + q = 2n - |vx|$. In the case of $z = 0^p 1^n q 0^{2n} 1^n$, the first third of z contains at least $n + 1$ 0’s, which means it contains at most $n - 1$ 1’s. Since the number of 1’s is not equal in the first and third 1/3rd of z, $z \not\in L$. A similar argument works for $z = 0^{2n} 1^n 0^p 1^{n+q}$.

$\forall vwx \in 1^0^+$

Pick $i = 0$. Then $z = 0^n 1^p 0^q 1^n$, where $p + q = 4n - |vx|$. If $p \neq q$ then clearly $z \not\in L$. If $p = q$ then $z = 0^n 1^{2n - |vx|/2} 0^{2n - |vx|/2} 1^n$. Now the length of z is $6n - |vx|$, so one third of z is $2n - |vx|/3$. If we split z into three equal length parts w_1, w_2, and w_3, where $z = w_1 w_2 w_3$ then $w_1 = 0^n 1^{n - |vx|/3}$ and $w_3 = 0^n 1^{n - |vx|/3} 1^n$, so $w_2 = 1^n - |vx|/6 0^n - |vx|/6$. $w_1 w_2 w_3 \not\in L$.