Part (b)

We will use L to denote the language $\{a^i b^i c^i | i \leq n \}$. For any constant $n > 0$, take a string to be $z = a^n b^n c^n$. Clearly $z \in L$. Now, the string will be decomposed into $z = u v w x y$, with $v w x \neq \epsilon$ and $|v w x| \leq n$. We then have several cases to consider:

- $v w x \in a^+$

 Pump up, and we will have more a’s than b’s. It does not belong to L.

- $v w x \in b^+$

 Pump up, and we will have more b’s than a’s. It does not belong to L.

- $v w x \in c^+$

 Pump up, and we will have more c’s than a’s and b’s. It does not belong to L.

- $v w x \in a^+ b^+$

 Pump down, and we will have less a’s and b’s than c’s. It does not belong to L.

- $v w x \in b^+ c^+$

 Pump up, and we will have more c’s than a’s. It does not belong to L.

Note that it is impossible to have $v w x \in a^+ b^+ c^+$, since $|v w x| \leq n$. So we have finished the proof that L is not a CFL.