CS381 Fall 2001 - Prelim Practice Exercises Prof Shai Ben-David

1. Given a language $L \subseteq \Sigma^{*}$ let $L_{\text {init }}=\left\{w\right.$: there exists some $x \in \Sigma^{*}$ so that $w x \in L\}$ (that is, the set of all initial segments of words in L).
(i) Prove that if two strings x, y are R_{L}-equivalent then they are also

$$
\mathrm{R}_{\mathrm{L}_{\text {init }}} \text {-equivalent }
$$

(ii) Prove that if L is regular then so is $L_{\text {init. }}$.
2. For each of the following languages L, find a set of strings S_{L} that contains exactly one string from every equivalence class of R_{L} :
(i) $\mathrm{L}=(01+101)^{*}$
(ii) $L=\left\{a^{n} b^{2 n}: n \in N\right\}$
3. Recall that a language L is called "boring" if for every $I \in N$ there exists some $k \in N$ such that all the strings whose lengths are between k and $k+l$ belong to L .

Prove that if L is a boring CFL then for some $n \in N$ every string w of length greater than n belongs to L .
4. Construct a grammar G such that $L(G)=\left\{0^{n} 1^{2 n}: n \in N\right\}$. Prove that this is indeed the language that your grammar generates.
5. Prove that $\left\{0^{n} 1^{2^{n}}: n \in N\right\}$ is not a CFL.

