CS381 Fall 2001 – Prelim Practice Exercises Prof Shai Ben-David

- 1. Given a language $L \subseteq \Sigma^*$ let $L_{init} = \{w: \text{ there exists some } x \in \Sigma^* \text{ so that } wx \in L\}$ (that is, the set of all initial segments of words in L).
 - (i) Prove that if two strings x, y are R_L -equivalent then they are also

R_{Linit}-equivalent

- (ii) Prove that if L is regular then so is L_{init} .
- 2. For each of the following languages L, find a set of strings S_L that contains exactly one string from every equivalence class of R_L :
 - (i) L = (01 + 101) *
 - (ii) $L = \{a^n b^{2n} : n \in N\}$
- Recall that a language L is called "boring" if for every l∈ N there exists some k∈ N such that all the strings whose lengths are between k and k+l belong to L.

Prove that if L is a boring CFL then for some $n \in N$ every string w of length greater than n belongs to L.

- 4. Construct a grammar G such that $L(G) = \{0^n 1^{2n} : n \in N\}$. Prove that this is indeed the language that your grammar generates.
- 5. Prove that $\{0^n 1^{2^n} : n \in \mathbb{N}\}$ is <u>not</u> a CFL.