
CS 381 – Prelim2 Solutions

1. Let L1 = {a
ib2

k

| i > 0, k ≥ 0}. Prove that L2 = {b
i | i ≥ 0} ∪ L1 does

satisfy the pumping lemma for regular languages (25Points).

Solution 1:

We must find a number n such that every w ∈ L2 with |w| > n can be
pumped: there exists x, y, z such that xyz = w, |xy| ≤ n, |y| ≥ 1, and for any
i ∈ N it is true that xyiz ∈ L2. Lets say n = 1. Consider all words w ∈ L2 of
length 2 or greater.
Case 1: w = bi. We know i ≥ 1 since choosing n = 1 means |w| > 1. Because

|xy| ≤ 1 and |y| ≥ 1 it must be that |x| = 0 and |y| = 1. In other words x = ε,
y = b and z is thus bi−1. Clearly, |xy| = |εb| ≤ 1 and |y| = |b| ≥ 1. Pumping w
to w′ = xyjz = bi+j−1 for any non-negative j, its clear that w′ ∈ L2 because it
is of the form bi+j−1 and i+ j − 1 ≥ 0 as j ≥ 0 and i ≥ 1.

Case 2: w = aib2
k

. We know i > 0 by definition. Once again, we have to
pick |x| = 0 and |y| = 1, which means x = ε, y = a because the first character of
w is a and z is the rest of the string. Clearly, |xy| = |εa| ≤ 1 and |y| = |a| ≥ 1.

Pumping w to w′ = xyjz = ai+j−1b2
k

for any non-negative j, its clear that
w′ ∈ L2 because i+ j − 1 is either 0 or greater than 0. If it is 0 then we are of

the form bi=2k

and 2k ≥ 0 so we are in L2 (Note: L2 = {b
i | i ≥ 0} ∪ L1). If it

is greater than 0, then we are still of the form ai=i+j−1b2
k

and i > 0, k ≥ 0 so
we are in L1 and thus in L2.
Thus, L2 satisfies the pumping lemma because for any w ∈ L with |w| > 1,

we can partition w into substrings xyz with |xy| ≤ n and |y| ≥ 1 so that w is
pumpable: xyiz ∈ L2 for all i ∈ N.

Comments 1: Grading of this problem proceeded as follows: 5 points for
choosing a number n; n had to be a number. Not defining n, or defining it as a
variable were common mistakes. 5 points for defining x, y, z such that for all w,
|w| > n (the n you chose), xyz = w. 5 points for showing that the properties
of the Pumping Lemma for regular languages hold for your definitions of x, y, z
and your choice of n (ie |xy| ≤ n and |y| ≥ n) and 10 points for showing that
for all j ∈ N, xyjz ∈ L2. Since there were two cases to be considered, the point
values to these steps were split between the two cases. Case 2 had the added
difficulty of the j = 0 case which was worth 3 of its 5 show points.

2. Prove that L2 described above is not a regular language. (10 bonus points)

Solution 2:

We do this by constructing an infinite set of words S = {w1, w2, . . .}, all of
which are pairwise non-equivalent under the relation RL (ie: for i 6= j, we can
find some string z so that wiz ∈ L2 while wjz /∈ L2 or vice versa).

1

Define wi = ab2
i

and S = {w1, w2, . . .}. Take any two distinct wi and wj .

Without loss of generality, assume i < j. Now define z = b2i

. Observe that

wiz = ab2
i

b2
i

= ab2
i+1

∈ L2. However, wjz = ab2
j

b2
i

6= ab2
k

for any integer k
because for i < j we know that 2j < 2j + 2i < 2j + 2j = 2j+1. Thus wjz /∈ L2.
Thus, we can conclude that RL partiitions L2 into infinitely many equiva-

lence classes (i.e., RL has infinite rank), so by the Myhill-Nerode theorem, L2

is not a regular language.

Grading:

The most common correct solution submitted was along the lines of the
proof given above. 3 points were awarded for giving an infinite set of equivalence
classes, 5 points for proving it, and 2 points for knowing the name of the theorem.
It was also possible to prove this using Kozen’s version of the pumping

lemma, which is stronger than the one we saw in class–a few people did this.
Another way to prove this is to use the fact that regular languages are

closed under complement and intersection, combined with the pumping lemma,
as follows: Let L3 = {bi|i ≥ 0}, and show (easily) that L3 is regular. So,
assuming L2 is regular, then L1 = L2 ∩L3 is regular. However, one can use the
pumping lemma to show that L1 is not regular, so our assumption that L2 was
regular must be incorrect.

Common Errors:

A disturbing number of people tried to use the pumping lemma (the one from
class) to prove this, after showing in Problem 1 that L2 satisfies the conditions
of the pumping lemma.
Others incorrectly applied the closure properties of regular languages. For

example, it is not the case that non-regular languages are closed under union
with regular languages; e.g., L ∪ Σ∗ is regular for any language L, even if it
is not regular. It is also not true that AB is non-regular for any non-regular
language B and any language A; consider A = ∅.

3. Let L = {w ∈ {a, b, c}∗ | #a(w) + #b(w) > #c(w)}. Prove that ∀i, j, k, l ∈
N, aibj ∼RL

akbl if and only if i+ j = l + k. (25 points)

Solution 3:

If i + j 6= l + k then x = aibj ¿RL
y = akbl because if we pick z =

cmax(i+j−1,k+l−1) then only one of xz and yz is in L. Whichever has a smaller
index sum is clearly not in L because there are too many cs. Whichever has the
larger index sum is fine, however, because it has the maximum allowed c’s.
If i + j = l + k then x = aibj ∼RL

y = akbl. Lets consider any string z
that we could append to x or y. Define na,b,c as na = #a(z), nb = #b(z),
and nc = #c(z). Now consider whether or not xz and yz are in L. Well,
#a(xz)+#b(xz) = i+ j+na+nb and #c(xz)} = nc. Also, #a(yz)+#b(yz) =
k+ l+na+nb and #c(yz)} = nc. Because i+j = k+ l these expressions are the
same: #a(xz) + #b(xz) = #a(yz) + #b(yz) and #c(xz) = #c(yz). Therefore,
if either xz ∈ L or yz ∈ L then the other string is also in L.

2

We have shown both directions of the if and only if, and thus can conclude
that aibj ∼RL

akbl iff i+ j = l + k.

A common error:

Recall the definition for the relation RL is:
x RL y iff: for all strings z ∈ Σ∗, xz ∈ L ⇔ yz ∈ L; not just: x∈L ⇔ y∈L.

Grading policy:

i)Remember to prove both directions, each direction 12-13 points.
ii)When proving i+ j = l+k ⇒ xRLy, the string z you append to x or y can be
any string in {a, b, c}∗, not only cn. If the z you chose wass not general enough,
you lost lose 5-7 points.
iii)If you misunderstood the meaning of RL, you lost more than 10 points. it
depends on your performance on the rest work.
iv)You lost 2-5 points if you didn’t make your idea clear.

4. Let C1 = {a
ib2ick | i, k ∈ N} and C2 = {a

nblcl | n, l ∈ N}.

Problem 4i: Describe a context free grammar G such that L(G) = C1. (25
points)

Solution 4i:

Define G = ({S,Xabb, C}, {a, b, c}, P, S) where our production rules P are
given as follows. S → XC. Xabb → aXbb | ε. C → cC | ε. For this grammar,
L(G) = C1.

Problem 4ii: Prove that C1 ∩ C2 is not a CFL. (25 points)

Problem 4ii: Prove that C1 ∩ C2 is not a CFL.

Solution 4ii:

Words w ∈ C1 ∩C2 are of the form aib2ick and also anblcl. This means that
k = 2i. So our language C = {aib2ic2i | i ∈ N}. We can prove that C is not a
CFL using the pumping lemma for CFLs. Lets play the CFL demon game!
The demon gives us n. We must reply with some word longer than n that

cannot be pumped. Lets pick w = anb2nc2n because clearly |w| > n.
The demon partitions w into x1x2x3x4x5 with |x2x3x4| ≤ n and |x2x4| ≥ 1.

Lets switch on the demon’s w′ = x2x3x4. If w
′ contains only one symbol type

(either a, b, or c) then clearly we cannot pump w and stay in C because we
are not allowed to change the ratio of the number of different symbols. Next,
w′ cannot contain a and b and c symbols because b appears 2n times between
the last a and the first b and |w′| ≤ n. Finally, if w′ contains any two symbols
(either a+ b, b+ c, or a+ c) then w is still unpumpable. Pumping such a string
would change the ratio of the symbols in w′ to the symbols not in w′, and for a
word to be in C it must have exactly the right ratio between all symbols.

3

Thus, regardless of the demon’s choice of n we can pick a word w so that
regardless of the demon’s partitioning of w the word is not pumpable. The CFL
pumping lemma does not hold for C, and therefore C is not a CFL.

4

