CS 381

Supplement to Reba's lecture: Computing $L(G)$ for CFG G

$$
10 / 15 / 01
$$

First, let me give you a nice clean version of the proof I did in class:

Let $G=(\Sigma, N, P, S)$, where $\Sigma=\{a, b\}, N=\{S\}, P=\{S \rightarrow \varepsilon, S \rightarrow a S b\}$
Claim: $\quad L(G)=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$

Proof:

$\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\} \subseteq L(G):$ We proceed by induction on n . Base case: if $\mathrm{n}=$ $0, a^{n} b^{n}=\varepsilon \in L(G)$ since $S \rightarrow \varepsilon$ is a production in P. Inductive step: Suppose $a^{n} b^{n} \in L(G)$. Then there exists a derivation $S \xrightarrow[G]{\stackrel{*}{G}} a^{n} b^{n}$. Now, this gives us the derivation $S \underset{G}{\vec{G}} a S b \underset{G}{\stackrel{*}{\vec{~}}} a\left(a^{n} b^{n}\right) b=a^{n+1} b^{n+1}$, where the first arrow is via the production $S \rightarrow a S b$, and the second is via the derivation that must exist by the inductive hypothesis.
$L(G) \subseteq\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}:$ For $x \in L(G)$, we proceed by induction on the length of the G-derivation of x. Base case: if $S \vec{G} x$, then $x=\varepsilon=a^{0} b^{0}$. Inductive step: Assume that if $S \stackrel{m}{\vec{G}}$ then $x=a^{n} B^{n}$ for some $n \in \mathbb{N}$. Now suppose $S \stackrel{m+1}{G} x$. This derivation must begin with the production $S \rightarrow a S b$, so it has the form $S \underset{G}{\stackrel{1}{\vec{G}}} a S b \stackrel{m}{\vec{G}}$. But then $x=a y b$ for some $y \in \Sigma^{*}$ such that $S \stackrel{m}{\vec{m}} y$. Now, by the inductive hypothesis, $y=a^{n} b^{n}$ for some $n \in \mathbb{N}$, so $x=a\left(a^{n} b^{n}\right) b=a^{n+1} b^{n+1}$ for that n.

Here's another, more difficult example, taken from Introduction to Automata Theory, Languages, and Computation by Hopcroft and Ullman . Let $G=$ $(\Sigma, N, P, S\}$, where $\Sigma=\{a, b\}, N=\{S, A, B\}$, and $P=\{S \rightarrow a B, S \rightarrow$ $b A, A \rightarrow a, A \rightarrow a S, A \rightarrow b A A, B \rightarrow b, B \rightarrow b S, B \rightarrow a B B\}$.

Claim: $L(G)=\left\{w \in\{a, b\}^{+} \mid \#_{a}(w)=\#_{b}(w)\right\}$

Proof:

Inductive Hypothesis: For $w \in\{a, b\}^{+}$,

1. $S \underset{G}{\stackrel{*}{\vec{*}}} w$ if and only if w contains an equal number of a's and b's.
2. $A \underset{G}{\stackrel{*}{\vec{G}}} w$ if and only if w has one more a than it has b's.
3. $B \stackrel{*}{\vec{G}} w$ if and only if w has one more b than it has a's.

We proceed by induction on $|w|$. Base case: If $|w|=1$, then either $\mathrm{w}=\mathrm{a}$, or $\mathrm{w}=\mathrm{b}$. Since no string of length 1 is derivable from S , part 1 of the inductive hypotheses holds. Part 2 holds because the production $A \rightarrow a$ is in P , and because this production and $B \rightarrow b$ are the only ones that don't increase the length of the string to which they are applied (thus, a is the only string of length 1 derivable from A). Similarly, part 3 holds.

Inductive step. Assume that the inductive hypothesis holds for all w such that $|w| \leq k-1$. We show that part 1 of the induction hypothesis holds for $|w|=k$. (Showing parts 2 and 3 is similar and left to the reader.)

Suppose $|w|=k$, and $S \underset{G}{\stackrel{*}{c}} w$. We must show that w contains an equal number of a's and b's. Now, the derivation must begin with either $S \underset{G}{\stackrel{*}{\vec{c}}} a B$ or $S \stackrel{*}{\vec{G}} b A$. In the former case, w has the form $a w_{1}$, where $\left|w_{1}\right|=k-1$, and $B \stackrel{*}{\vec{G}} w_{1}$. By the inductive hypothesis, the number of b's in w_{1} is one more than the number of a's, so whas an equal number of a's and b's. The latter case is analogous.

Now, suppose $|w|=k$, and w has an equal number of a's and b's. We must show that $w \in L(G)$. Either the first letter of w is an a, or it is a b . Assume $w=a w_{1}$. Then $\left|w_{1}\right|=k-1$, and w_{1} has one more b than it has a's, so by the inductive hypothesis, $B \underset{G}{\stackrel{*}{\vec{G}}} w_{1}$. Thus, we have a derivation $S \xrightarrow[G]{\vec{*}} a B \underset{G}{\stackrel{*}{\vec{G}}} a w_{1}=w$. If, instead, the first letter of w is b , the argument is analogous.

