
CS 381 – HW7 Solutions

1. For each of the following languages, find out if it is recursive or not. If it
is, describe a total Turing machine that computes it. If not, explain why the
existense of such a machine entails a contradiction.

(a) {0n01n10n2 ...1n2k−10n2k : for all 0 ≤ i ≤ 2k, i ∈ N and n0 is a solution
to the equation n1x

n2 + n3x
n4 + ... + n2k−1x

n2k = 0}

Solution:

n0 must be a solution to the equation n1x
n2 + n3x

n4 + ... + n2k−1x
n2k = 0.

Let n0 = 0, a valid solution, so that the problem at hand is to determine whether
or not the set of strings of the form ε1n10n2 ...1n2k−10n2k for all 0 ≤ i ≤ 2k, i ∈ N
satisfying n10

n2 + n30
n4 + ... + n2k−10

n2k = 0 is recursive. Since all coefficients
n1, n3, ..., n2k−1 must be non-negative, we know that n2, n4, ..., n2k 6= 0 (because
00 = 1, and then 0 would not be a solution to the equation). It is not too difficult
to see that this set of strings is just (0 + 1)∗0 (all strings from {0, 1}∗ that end
in 0).

To construct a Total Turing Machine for this set is easy. Scan the input
tape to verify the characters belong to the alphabet {0,1}, and proceed to the
last character on the tape. If it is a 0 accept – else reject.

Comments:

Numerous typos existed in the problem definition, which left the question
open to interpretation. Because of this, we tried to grade fairly by accepting
any and all interpreations. The above solution is my interpretation of what was
being asked.

1c. {#M | |L(M)| < 100}

Solution 1c:

Assume the existance of a total turing machine T that computes L.
We solve the halting problem using T as follows:
On input machine M and word x, we create a turing machine M ′ that ignores

its input and simulates M on x. If M halts on x, then M ′ accepts its input no
matter what it was. Otherwise, M ′ loops forever on all inputs. Its easy to see
that L(M ′) = Σ∗ if M halts on x and L(M) = φ if M fails to halt on x. Now
feed M ′ as input to total turing machine T . If T accepts M ′ then M ′ must have
fewer than 100 words in its language, and thus must be phi, and thus M must
have failed to halt on x. If T rejects M ′ then M ′ has more than 100 words in
its language, and thus must be Σ∗, and thus M must have halted on x. Because
T is assumed to be total, we are guaranteed to halt, and so in finite time we
have determined whether or not M halted on x. But this is impossible because
the halting problem isn’t recursive, and therefore our assumption of total T was
wrong ... and the original language must not be recursive.

1

1d. {(#M1, #M2) | L(M1) = L(M2)}

Solution 1d:

Assume the existance of a total turing machine T that computes L.
We solve the halting problem using T as follows:
On input machine M and word x, we create a turing machine M ′ that saves

its input y and simulates M on x. If M halts on x, then M ′ accepts only if
y = 0. Otherwise, M ′ loops forever on all inputs. Similarly, we make M ′′ the
same way, except of M halts on x, then M ′′ accepts only if y = 1. Its easy to see
that L(M ′) = {0} and L(M ′′) = {1} if M halts on x and L(M ′) = L(M ′′) = φ
if M fails to halt on x. Now feed M ′ and M ′′ as input to total turing machine T .
If T accepts then M ′ and M ′′ must have the same language, which must be φ,
and so M must have failed to halt on x. If T rejects then M ′ and M ′′ must have
difference languages {0} and {1} respectively, and thus M must have halted on
x. Because T is assumed to be total, we are guaranteed to halt, and so in finite
time we have determined whether or not M halted on x. But this is impossible
because the halting problem isn’t recursive, and therefore our assumption of
total T was wrong ... and the original language must not be recursive.

3. Prove that the family of recursive languages is closed under the * operation.
Namely, if L is recursive then so is L∗ = {w1...wn : n ∈ N and for all i, wi ∈ L}.

Solution:

Assume that L is a recursive language. Then we know there exists a Total
Turing Machine ML s.t. L(ML) = L. If we can create a Total Turing Machine
using ML, to accept L∗ then we will have succeded in proving that recursive
languages are closed under asterate.

Let’s define a new Turing Machine, call it M ′ which has ML encoded in it’s
state logic. Given any word x, M ′ will procceed to determine whether or not
x ∈ L∗. If x = ε then M ′ accepts. Otherwise, M ′ simulates ML on x. If ML

accepts then M ′ also accepts since clearly if w ∈ L, w ∈ L∗. If |x| = 1 and ML

rejects, M ′ rejects (if a single character doesn’t exist in L, the * operation will
not introduce it in L∗).

Assuming |x| ≥ 2, let n = |x|. M ′ partitions x into 2 segments, such
that x = x1x2. There is a finite number of ways to partition any string into 2
segments. M ′ tries each 2-partition in a systematic order. For each, it simulates
ML on x1 and then again on x2. If a 2-partition exists such that both the
particular x1 and x2 are accepted by ML, then M ′ accepts (if x1, x2 ∈ L then
x1x2 ∈ L∗). This process repeats for all possible partitions of x into 3, 4,...n
substrings – a finite amount of work. If at no point, ML can accept each
resulting x1, x2, ...xk k ≤ n, then M ′ rejects (if 6 ∃k s.t. x = x1x2...xk where
x1, x2..., xk ∈ L, then x /∈ L∗).

Clearly, L(M ′) = L∗. Furthermore, since ML is guaranteed to always halt,
and there is only a finite amount of work required to determine whethere or not
a given x ∈ L∗, M ′ will always halt. Therefore M ′ a Total Turing Machine.

Comments:

2

The key realization to this problem is that for a given x, it takes a finite
amount of work to try all possible substrings of x such that their concatenations
yields x. People that resorted to using non-determinism should have developed
a deterministic approach since non-deterministic TMs are not covered in the
course.

The most common error, entailed merely modifying ML to have it’s start
state be an accept state, and adding a transition from its accept state to its
start state. With a little thought, one can see how the resulting TM is a flawed
greedy algorithm to determine whether x ∈ L∗. Assume a, ab ∈ L. aab ∈ L∗

and yet the proposed TM would verify that the first a ∈ L, the second a ∈ L
but reject because b 6∈ L.

4a. For every T , L(T) = L(T).

Solution 4a:

False. Words that cause T to loop also cause T to loop, and are thus are not
in L(T) while they are in L(T). Machines that loop exist, and therefore this
fact provides a counterexample.

4b. For every T1 and T2, if L(T1) = L(T2) then L(T1) = L(T2).

Solution 4b:

False. We can choose make T1 to loop on some word w /∈ L(T1) = L(T2)
but have T2 immediately reject w. Thus w /∈ L(T1) but w ∈ L(T2).

4c. For every machine T , if L(T) is recursive then so is L(T).

Solution 4c:

False, by counter-example. Consider the machine T that takes as input a
machine M and a word x. T then runs M on x. If M halts on x, T rejects.
Its fairly clear that L(T) = φ, and so even though T is not total, L(T) is
recursive because some other recursive machine accepts L(T). If we look at
L(T), however, T runs M on x and accepts if M halts on x. L(T) is the
language of machine and word pairs such that the machine halts on the word –
the halting problem! We know the halting problem isn’t recursive, and so this
provides us a counter-example.

Note: it is not enough to say that because T may not be total, T may not be
total and therefore L(T isn’t recursive. We have to show an example in which
T is not total, T is not total, and also no total machine T ′ computes the same
language L(T). The above example is such a language.

3

