
CS 381 – HW5 Solutions

1. Given any CF grammar G = (Σ, N, S, P), construct a grammar G′ such that
L(G′) = {reverse(w) | w ∈ L(G)}.

Solution 1:

Define G′ = (Σ, N, S, P ′) where the only difference between G and G′ are the
production rules. We define the new production rules P ′ = {reverse(p) | p ∈ P}.
The notation reverse(p) simply means we reverse the production rule p. So if
p = AxBy then reverse(p) = yBxA.

2. Construct a PDA M so that L(M) = {0l1k | k ≤ l ≤ 2k}.

Solution 2:

The PDA M will push one marker onto the stack for every 0 it reads at the
beginning of the input word. The PDA will then non-deterministically pop one
or two of these symbols off the stack for every 1 it reads at the end of the input
word. Clearly, the number of markers pushed onto the stack will be exactly l

where the input word began 0l. The number of symbols that are popped off the
stack can be any number inclusively between k and 2k where k is the number
of 1s in the string. We accept as long as this number is exactly l (the symbols
pushed onto the stack), which means we accept if and only if k ≤ l ≤ 2k, as
desired.

3. Prove that {w reverse(w) w | w ∈ {0, 1}∗} is not a CFL.

Solution 3:

We can appeal to the pumping lemma for CFLs (more demon fun!). The
demon gives us n, we give the demon the word x = 0n102n102n10n which is
in our language because x = w reverse(w) w for w = 0n10n. The demon
partitions x = x1x2x3x4x5 where |x2x3x4| ≤ n and |x2x4| ≥ 1. Lets switch on
the demon’s choice of x′ = x2x3x4. Because |x

′| ≤ n and each 1 in string x is
surrounded by n or more 0s, there is at most one 1 in x′. Supposing there is a 1
in x2x4, then we can pump zero times to delete the 1 to produce a string with
only two 1s. This is clearly not in the desired language because in any word
in our language all symbols appear in multiples of three (once in the first w,
once in the reverse(w), and finally in the last w). If the 1 does not appear in
x2x4 (either it is in x3 or not in x′ at all), pumping changes the length of either
one sequence of 0s or two sequences of 0s. However, there are four sequences of
0s in our original word, and changing the length of two sequences must remove
the word from the language. The word 0i10j10k10l is in our language only if
i + l = j = k, and pumping one or two 0 sequences cannot leave a word of this
form.

1

4. Prove that if L1 is a CFL and L2 is a regular language, then L1 ∩ L2 is a
CFL.

Solution 4:

We can prove this by constructing a PDA that accepts the intersection L1 ∩
L2. Lets take the states from the PDA for L1 and the states from the DFA for
L2 and use a product construction to create a new set of states that will accept
the intersection (the PDA transitions will use a stack, and the DFA transitions
won’t because they don’t need to). Ultimately, only one stack is used, so this
won’t be a problem. We thus simulate the DFA and PDA in parallel using
the stack as required for the PDA. Our accept states are products of accepting
states for the input PDA and DFA, with the added restruction that we must be
at the bottom of the stack.

2

