CS 381 — HW2 SOLUTIONS

1. Prove that if L; and L, are regular languages, then so is: Li\Ly = {w €
Ly ¢ Ly}

Method:

We can prove this by constructing a DFA for L;\L» using the DFAs for L;
and Ly. Lets denote DFA; = (Q1,3, ¢;t*"t,6,, ACCEPT}) as the DFA for L,
and DF Ay = (Qs, X, g5t 55, ACCEPT) as the DFA for L,. We will call the
DFA we construct DFA' = (Q, %, ¢t 6, ACCEPT).

Construction:

DF A’ clearly needs the same language ¥ as both DFA; and DFAs. Our
DFA will have a state for every pair of states ¢; in @1 and g2 in Q2: @ =
{(q1,2) | @1 € Q1g2 € Q2}. The start state ¢*'°"* will be the state pair
(gstart gstert). Our transition function will seperately map the initial DF A,
state to the next DF A; state and the initial DF A5 state to the next DEF A, state
according to the transition functions §; and d2: 0((q1,¢2)) = (01(q1),d2(q2))-
The accept states for DF A" will be all states (¢1,¢2) such that ¢ is an ac-
cept state of DFA; and ¢» is not an accept state of DFAy: ACCEPT =

{(q1,0) | ¢ € ACCEPT,qs ¢ ACCEPT)}.

Correctness:

DF A’ starts with state (g{?e7t, g5t2"t) and seperately tracks the progress of
its input through DF A; and DF A;. We only accept an input string w if DF A,
would have accepted w. Thus w € L;. Also, we only accept w if DF Ay would
have rejected w. Thus w ¢ L. This is the exact description of L;\Ls.

Another Method:

We can also prove the claim by noting that Li\L: = L1 N Lg where we’ve
used LS to denote the complement of L,. We know that regular languages are
closed under complement and intersection, so L; \ L» must be a regular language.

2. Given a DFA M = (Q,%,q0,6,F) and p,q € Q, let L(M,p,q) = {w | ¢ =
0(p,w)}. Prove/refute each of the following claims.

Problem i:
For every M,p,q as above and every z,y € ¥* if z € L(M,p,q) and y €
L(M, q,p) then zy € L(M,p,p).

Solution i:

This fact can be proven rigorously using induction on the length of y and
the definition of . A more conceptual proof follows: z € L(M, p,q) means that
x takes our machine from state p to state ¢. y € L(M,q,p) means that y takes
our machine from state ¢ to state p. Lets now start in state p and input zy.
The machine first reads =, which leaves us in state ¢. The machine then reads
y, which takes us to state p. Thus zy € L(M,p,p).

Problem ii:



For every M,p,q as above and every y,z € ¥* if yz € L(m,p,q) then
there exist some r € @ such that for every z € L(M,r,r) and every i € N,
yx'z € L(M, p,q).

Problem ii:

First, lets define r = S(p,y). Observe that this means that y € L(M,p,r)
and z € L(M,r,q). Now lets show that for this choice of r it is true that for
every z € L(M,r,r) and every i € N we have yx'z € L(M,p,q). Note that
for any specific i, x € L(M,r,r) = z; € L(M,r,r) because we can inductively
apply the result of part (i) to reduce the length of the concatenation. Lets
now denote z' as ', observing that 2’ € L(M,r,r). We then need to show
yz'z € L(M,p,q). But this is true because y takes state p to state r, z' takes
state r to state r, and z takes state r to state ¢. Thus applying yx'z in sequence
takes us from state p to state r. Hence: yx'z = yx'z € L(M, p,q).

3. Recall that a language is regular if it is computable by some DFA.

Problem i:
Prove that any intersection of finitely many regular languages is a regular
language.

Solution i:

We know that regular languages are closed under intersection. That is, for
any two regular languages L; and Lo, we know that L' = L; N Ly is regular.
The problem of intersecting IV regular languages L1 ULy ... Ly can be directly
translated to the problem of intersecting N — 1 regular languages (L' = Ly U
Ly)U L3 ... Ly where we know L' is regular because regular languages are
closed under intersection. We can repeat this translation N — 1 times for any
finite N to produce a single regular language - the intersection of the IV original
languages. Thus the intersection of finitely many regular languages is regular.

Problem ii:
Prove that there exists a set W of regular languages so that the intersection
of all languages in W is not regular.

Solution ii:

We can prove this constructively. First off, we know that irregular languages
exist. Given an irregular language I we can construct I as an infinite intersection
of regular languages as follows:

Lweg* =Y —w

W=ALy |w ¢ I}

I claim first that every language in W is regular and second that the intersection
of all languages in W leaves us with the irregular language I. Note that L,, is
just the complement of the language w, which is finite and therefore regular.
It follows that, because regular languages are closed under complements, L,



is regular. Next, the intersection of all elements in W is defined as only those
elements that are in every single language in W. The only elements in every
language in W are the elements of I. Clearly the elements of I are in every
language in W. Also, any element not « ¢ I is absent from some language
in W, namely L,. Thus we have constructed an irregular langiage from the
intersection of an infinite number of regular languages.

Problem iii:

Find a set W of regular languages such that W is infinite and yet the inter-
section of all the languages in W is an infinite regular language.
Solution iii:

Many examples work. We can construct one example by defining our set W
to be composed of individual languages L., where L, is some regular language
(say 0*) unioned with some unique string w ¢ 0*. The intersection of any
two of these languages will clearly be only 0*, a regular language (clearly the
intersection of all elements of W is also 0* because every element contains at
least 0*). There are an infinite number of such languages, because there are an
infinite number of distinct w ¢ 0*. And ... thats it.

4. Find a set W consisting of infinitely many languages over {0, 1} so that:
(i) Each language in W is infinite.

(ii) Each language in W is regular.

(i) Ly #Ly € W = LN Ly = ¢.

Solution:
Many examples work. We can construct one example by defining:

Li={w|w=01jecZ"}
W={L;|i€Z"}
Clearly, each L; is infinite because we can trail 0¢ with any number of 1s we want.
Also, each L; is regular because it is the concatenation of two regular languages:
{0} is regular for any specific 7, and we know 1* to be regular. Finally, no two

languages share any element because strings from different languages have a
different number of leading 0s. Thus W satisfies properties (i), (ii), and (iii).

. Construct a DFA, M, such that L(M) = L(N) where N is the given NFA
(see Figure 1).

6. Construct a NFA, M, over ¥ = {1,2,3,4,5} such that M has only five states
and L(M) = {w = 0102 ... 0 : 1 <i<j < |w = o0 <oj}. In other
words, the numbers that are the letters in w appear in non-decreasing order (see
Figure 2).



l c
@)

()

2)
(5 @3

io

®

(e

ab

o
o

,C

Figure 1: Observe that the given NFA described the language L = a*b*c*. The
above DFA describes the same language. We have three states to keep track
of the most recent symbol read, and in the case that we ever read a ‘smaller’
symbol we go to a non-accepting garbage state.

Figure 2: Observe that the language we desire is 1*2*3*4*5*. This problem is
very similar to the NFA given in Problem 5, and we can thus construct a similar
NFA.



