CS 381 – HW2 SOLUTIONS

1. Prove that if L_1 and L_2 are regular languages, then so is: $L_1 \setminus L_2 = \{w \in L_1 \notin L_2\}$

Method:

We can prove this by constructing a DFA for $L_1 \setminus L_2$ using the DFAs for L_1 and L_2 . Lets denote $DFA_1 = (Q_1, \Sigma, q_1^{start}, \delta_1, ACCEPT_1)$ as the DFA for L_1 and $DFA_2 = (Q_2, \Sigma, q_2^{start}, \delta_2, ACCEPT_2)$ as the DFA for L_2 . We will call the DFA we construct $DFA' = (Q, \Sigma, q_2^{start}, \delta, ACCEPT)$.

Construction:

DFA' clearly needs the same language Σ as both DFA_1 and DFA_2 . Our DFA will have a state for every pair of states q_1 in Q_1 and q_2 in Q_2 : $Q=\{(q_1,q_2)\mid q_1\in Q_1q_2\in Q_2\}$. The start state q^{start} will be the state pair $(q_1^{start},q_2^{start})$. Our transition function will seperately map the initial DFA_1 state to the next DFA_1 state and the initial DFA_2 state to the next DFA_2 state according to the transition functions δ_1 and δ_2 : $\delta((q_1,q_2))=(\delta_1(q_1),\delta_2(q_2))$. The accept states for DFA' will be all states (q_1,q_2) such that q_1 is an accept state of DFA_1 and q_2 is not an accept state of DFA_2 : $ACCEPT=\{(q_1,q_2)\mid q_1\in ACCEPT_1q_2\notin ACCEPT_2\}$.

Correctness:

DFA' starts with state $(q_1^{start}, q_2^{start})$ and seperately tracks the progress of its input through DFA_1 and DFA_2 . We only accept an input string w if DFA_1 would have accepted w. Thus $w \in L_1$. Also, we only accept w if DFA_2 would have rejected w. Thus $w \notin L_2$. This is the exact description of $L_1 \setminus L_2$.

Another Method:

We can also prove the claim by noting that $L_1 \setminus L_2 = L_1 \cap L_2^C$ where we've used L_2^C to denote the complement of L_2 . We know that regular languages are closed under complement and intersection, so $L_1 \setminus L_2$ must be a regular language.

2. Given a DFA $M = (Q, \Sigma, q_0, \delta, F)$ and $p, q \in Q$, let $L(M, p, q) = \{w \mid q = \hat{\delta}(p, w)\}$. Prove/refute each of the following claims.

Problem i:

For every M, p, q as above and every $x, y \in \Sigma^*$, if $z \in L(M, p, q)$ and $y \in L(M, q, p)$ then $xy \in L(M, p, p)$.

Solution i:

This fact can be proven rigorously using induction on the length of y and the definition of $\hat{\delta}$. A more conceptual proof follows: $x \in L(M, p, q)$ means that x takes our machine from state p to state q. $y \in L(M, q, p)$ means that y takes our machine from state q to state p. Lets now start in state p and input xy. The machine first reads x, which leaves us in state q. The machine then reads y, which takes us to state p. Thus $xy \in L(M, p, p)$.

Problem ii:

For every M, p, q as above and every $y, z \in \Sigma^*$, if $yz \in L(m, p, q)$ then there exist some $r \in Q$ such that for every $x \in L(M, r, r)$ and every $i \in \mathbb{N}$, $yx^iz \in L(M, p, q)$.

Problem ii:

First, lets define $r = \hat{\delta}(p, y)$. Observe that this means that $y \in L(M, p, r)$ and $z \in L(M, r, q)$. Now lets show that for this choice of r it is true that for every $x \in L(M, r, r)$ and every $i \in \mathbb{N}$ we have $yx^iz \in L(M, p, q)$. Note that for any specific $i, x \in L(M, r, r) \to x_i \in L(M, r, r)$ because we can inductively apply the result of part (i) to reduce the length of the concatenation. Lets now denote x^i as x', observing that $x' \in L(M, r, r)$. We then need to show $yx'z \in L(M, p, q)$. But this is true because y takes state p to state p, p takes state p to state p, and p takes state p to state p. Thus applying p to state p to state p to state p. Hence: p to p to

3. Recall that a language is regular if it is computable by some DFA.

Problem is

Prove that any intersection of finitely many regular languages is a regular language.

Solution i:

We know that regular languages are closed under intersection. That is, for any two regular languages L_1 and L_2 , we know that $L' = L_1 \cap L_2$ is regular. The problem of intersecting N regular languages $L_1 \cup L_2 \ldots L_N$ can be directly translated to the problem of intersecting N-1 regular languages $(L' = L_1 \cup L_2) \cup L_3 \ldots L_N$ where we know L' is regular because regular languages are closed under intersection. We can repeat this translation N-1 times for any finite N to produce a single regular language - the intersection of the N original languages. Thus the intersection of finitely many regular languages is regular.

Problem ii:

Prove that there exists a set W of regular languages so that the intersection of all languages in W is not regular.

Solution ii:

We can prove this constructively. First off, we know that irregular languages exist. Given an irregular language I we can construct I as an infinite intersection of regular languages as follows:

$$L_{w \in \Sigma^*} = \Sigma^* - w$$

$$W = \{L_w \mid w \notin I\}$$

I claim first that every language in W is regular and second that the intersection of all languages in W leaves us with the irregular language I. Note that L_w is just the complement of the language w, which is finite and therefore regular. It follows that, because regular languages are closed under complements, L_w

is regular. Next, the intersection of all elements in W is defined as only those elements that are in every single language in W. The only elements in every language in W are the elements of I. Clearly the elements of I are in every language in W. Also, any element not $x \notin I$ is absent from some language in W, namely L_x . Thus we have constructed an irregular language from the intersection of an infinite number of regular languages.

Problem iii:

Find a set W of regular languages such that W is infinite and yet the intersection of all the languages in W is an infinite regular language.

Solution iii:

Many examples work. We can construct one example by defining our set W to be composed of individual languages L_w where L_w is some regular language (say 0^*) unioned with some unique string $w \notin 0^*$. The intersection of any two of these languages will clearly be only 0^* , a regular language (clearly the intersection of all elements of W is also 0^* because every element contains at least 0^*). There are an infinite number of such languages, because there are an infinite number of distinct $w \notin 0^*$. And ... thats it.

- 4. Find a set W consisting of infinitely many languages over $\{0,1\}$ so that:
- (i) Each language in W is infinite.
- (ii) Each language in W is regular.
- (iii) $L_1 \neq L_2 \in W \rightarrow L_1 \cap L_2 = \phi$.

Solution:

Many examples work. We can construct one example by defining:

$$L_i = \{ w \mid w = 0^i 1^j \ j \in \mathbb{Z}^+ \}$$

 $W = \{ L_i \mid i \in \mathbb{Z}^+ \}$

Clearly, each L_i is infinite because we can trail 0^i with any number of 1s we want. Also, each L_i is regular because it is the concatenation of two regular languages: $\{0^i\}$ is regular for any specific i, and we know 1^* to be regular. Finally, no two languages share any element because strings from different languages have a different number of leading 0s. Thus W satisfies properties (i), (ii), and (iii).

- 5. Construct a DFA, M, such that L(M) = L(N) where N is the given NFA (see Figure 1).
- 6. Construct a NFA, M, over $\Sigma = \{1, 2, 3, 4, 5\}$ such that M has only five states and $L(M) = \{w = \sigma_1 \sigma_2 \dots \sigma_{|w|} : 1 \le i < j \le |w| \to \sigma_i \le \sigma_j\}$. In other words, the numbers that are the letters in w appear in non-decreasing order (see Figure 2).

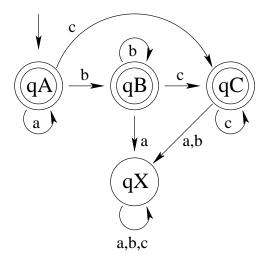


Figure 1: Observe that the given NFA described the language $L=a^*b^*c^*$. The above DFA describes the same language. We have three states to keep track of the most recent symbol read, and in the case that we ever read a 'smaller' symbol we go to a non-accepting garbage state.

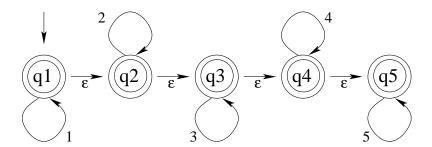


Figure 2: Observe that the language we desire is $1^*2^*3^*4^*5^*$. This problem is very similar to the NFA given in Problem 5, and we can thus construct a similar NFA.