Problem 4 This problem did not ask for a proof, so we did not take off points for incorrect proofs, informal proofs, or total lack of a proof.

Many of you argued informally to show your example satisfied (b), with the idea that, “the intersection of a finite number n of sets in W looks like such and such, so as n goes to infinity it must be empty.” Please see the proofs below to see how to prove this more formally.

Solution 1: Let $W = \{L_i | i \in \mathbb{N}\}$, where $L_i = \{w \in \{0,1\}^* | |w| > i\}$. Note: with W of this form, we can naturally associate subsets of W with subsets of \mathbb{N}; $V \subseteq W$ corresponds to $S_V = \{i | L_i \in V\}$. And conversely $S \subseteq \mathbb{N}$ corresponds to $\{L_i | i \in S\}$.

Proof that W satisfies (a): Let V be a finite subset of W, and let S_V be the corresponding finite subset of \mathbb{N}. Then S_V contains a maximal element, say n. Then, $1^{n+1} \in L_i$ for all $i \in S_V$. Therefore, $1^{n+1} \in \bigcap_{i \in S_V} L_i = \bigcap_{L \in V} L$, so this intersection is non-empty.

Proof that W satisfies (b) and (c): Let T be any subset of \mathbb{N}. Assume there exists some string $x \in \bigcap_{i \in T} L_i$. By definition, this means that $x \in L_i$ for all $i \in T$. Suppose $|x| = k$. Then for $i > k$, $i \notin T$. Thus, T must be finite. It follows that any subset of W with nonempty intersection is finite, so all infinite subsets of W have empty intersection. We have now shown (c). For (b), it suffices to note that there exists an infinite subset of W (in particular, W itself is infinite), and by (c), this subset has empty intersection.

Solution 2: Let $W = \{L_i | i \in \mathbb{N}\}$, where $L_i = ((01)^i)^* - \{\varepsilon\}$.

Proof that W satisfies (a): Let S be a finite subset of \mathbb{N}, and let $k = \text{LCM}\{i | i \in S\}$. Then $\bigcap_{i \in S} L_i = L_k \neq \emptyset$. Note: It is not the case that $\bigcap_{i \in S} L_i = L_k$, where k is the greatest number in S (this was a common error).

Proof that W satisfies (b) and (c): Let T be a subset of \mathbb{N}. Assume there exists some string $x \in \bigcap_{i \in T} L_i$. By definition, this means that $x \in L_i$ for all $i \in T$. Suppose $|x| = k$. Then for $i > k$, $x \notin L_i$, so T must be finite.

Solution 3:

This solution satisfies only (a) and (b), and is somewhat complicated. However, we point out this solution because several students attempted a solution along these lines.
The idea is to let \(L_i \) be the set of all strings in \(\{0,1\}^* \) except \(x_i \), where \(x_i \) is some string. There were several students who had this idea but didn’t explicitly say what \(x_i \) should be. Choosing \(x_i \) appropriately is essential for satisfying (b); for each string \(x \in \{0,1\}^* \) there must be some \(i \) such that \(x_i = x \). In other words, the function \(f \) from \(\mathbb{N} \) to \(\{0,1\}^* \) such that \(f(i) = x_i \) must be onto.

We first define an order on \(\{0,1\}^* \) as follows: define \(x \prec y \iff |x| < |y| \) or \((|x| = |y| \text{ and the first place from the left at which } x \text{ and } y \text{ differ has a } 0 \text{ in } x \text{ and a } 1 \text{ in } y) \). Observe that this is a well-ordering; in particular, for every string \(x \), there is a string \(y \) such that \(x \prec y \) and there is no \(z \) such that \(x \prec z \prec y \). When this relationship holds, call \(y \) the successor of \(x \).

Next, we define a map \(f \) from \(\mathbb{N} \) to \(\{0,1\}^* \) inductively. First, let \(f(0) = \varepsilon \). Now assume \(f(n) \) is defined for all \(n < m \). Then let \(f(m) \) be the successor of \(f(m-1) \) in \(\{0,1\}^* \), with successor as defined above.

Note that \(f \) is onto.

Let \(x_i = f(i) \). Now, let \(W = \{ L_i \mid i \in \mathbb{N} \} \), where \(L_i = \{0,1\}^* - \{x_i\} \).

We omit the proof that this solution is valid, but (b) holds because \(f \) is onto, so that the intersection of all the languages in \(W \) is empty.

Some solutions submitted along these lines did not define \(f \) explicitly and basically said, “let \(f \) be any one-to-one map from \(\mathbb{N} \) to \(\{0,1\}^* \).” The problem with this is that not all such maps are onto. For example, if \(f(n) = 0^n \), then the intersection of all languages in \(W \) contains any string of all 1’s. Similarly, for any such \(f \) that is not onto, the intersection of all languages in \(W \) is non-empty (it contains any string \(x \) not in the range of \(f \)), and (b) is not satisfied.