3. (i) Prove that if x and y are both strings over the same 1-letter alphabet, then $x y=y x$
(ii) Find strings x, y over the alphabet $\{0,1\}$ such that $x \neq y$, both 0 and 1 appear in x (and y), and yet $x y=y x$.
(iii) BONUS: Find a general (as general as you can) condition on strings such that if x, y satisfy this condition, then $x y=y x$.
(i)Proof: let $\Sigma=\{a\}$ be the 1-letter alphabet.

$$
|x y|=|x|+|y|=|y|+|x|=|y x|
$$

so the length of $x y$ equals to that of $y x$. Let $m=|x y|=|y x|$, then both $x y$ and $y x$ are consisted of m continuous a's. so

$$
x y=y x
$$

Note: 1. don't confuse string with set!
x and y are strings. String is not a set, it just means a finite sequence of elements in $\sum . x y, y x$, the cancatenation of x, y, mean putting x and y together end by end.
So if $x=a, y=a, x \neq\{a\}, y \neq\{a\}$,
$x y \neq\{\varepsilon, a, a a\}$
2. x and y are both strings over the same 1-letter alphabet, this means x and y are consisted of a unique letter, $x, y \in \sum^{*}$, but not x, y being a letter.
(ii) $\mathrm{x}=10, \mathrm{y}=1010$ $x \neq y, x y=y x=101010$
(iii) $\mathrm{x}=z^{m}, \mathrm{y}=z^{n}, \mathrm{~m}, \mathrm{n}<=0, \mathrm{z}$ can be any string $\in \sum^{*}$

Note: A very common answer is $\mathrm{y}=x^{n}$. This is right, but not general enough. This requires $|y| \bmod |x|=0$. that's not necessary. Look at this example: $\mathrm{X}=1010, \mathrm{y}=101010$, for any $\mathrm{n}, \mathrm{y} \neq \mathrm{x}^{n}$, but $\mathrm{x} y=\mathrm{yx}$.

