Which of the following statements holds for every three languages L_1 , L_2 , L_3 .

```
i) (L_1 \cap L_2)L_3 = L_1L_3 \cap L_2L_3
FALSE.
Proof by counterexample:
L_1 = \{a\}
L_2 = \{b\}
L_3 = \{c\}
(L_1 \cap L_2)L_3 = \{\}\{c\} = \{c\}
(L_1L_3 \cap L_2L_3) = \{ac\} \cap \{bc\} = \{\}
\{c\} \neq \{\}
ii) (L_1^* = L_1^* L_1^*
```

TRUE.

To prove this claim, we must prove a: $(L_1^* \subseteq L_1^* L_1^*)$ and b: $(L_1^* L_1^* \subseteq L_1^*)$.

- a) Take any $x \in L_1^*$ and show $x \in L_1^*L_1^*$. Observe $x = x\epsilon$. $x \in L_1^*$ by assumption and $\epsilon \in L_1^*$ by definition of L_1^* therefore $x \in L_1^*L_1^*$.
- b) Take any $x \in L_1^*L_1^*$ and show $x \in L_1^*$. Observe $x \in L_1^*L_1^*$ means x = yz where $y \in L_1^*$ and $z \in L_1^*$. By definition of L_1^* this means that $y \in L_1^n$ and $z \in L_1^m$ for some non-negative integers n and m. This means that $yz \in L_1^{\{n+m\}}$, which in turn means that $x = yz \in L_1^*$ because by definition $L_1^{\{n\}} + m \in L_1^*$.
- iii) $(L_1 \cup L_2) \cap L_3 = L_1 \cup (L_2 \cap L_3)$ FALSE. Proof by counterexample: $L_1 = \{a\}$ $L_2 = \{b\}$ $L_3 = \{c\}$ $(L_1 \cup L_2) \cap L_3 = \{a, b\} \cap \{c\} = \{\}$ $L_1 \cup (L_2 \cap L_3) = \{a\} \cup \{\} = \{a\}$ $\{\} \neq \{a\}$