## CS381 Fall 2001 Homework 8, Part I Prof Shai Ben-David

Due: Friday, December 7, 2001 — 9:05 am

**PLEASE NOTE:** This assignment is optional in the following sense: we will drop the worst 3 assignments (instead of 2, as previously stated) when we calculate your grade.

- 1. Prove that for every language  $L \in R$  (that is, L is a recursive language), and every non-trivial language L', there is a reduction of L to L'. (Note: L' is non-trivial if L' is neither  $\emptyset$  nor  $\Sigma^*$ .)
- 2. Find a pair of languages L, L' such that  $L \leq_m L'$  but  $L' \not\leq_m L$  (that is, there exists a reduction of L to L' but there is no reduction of L' to L).
- 3. Prove or refute the following claim: For every pair of languages A, B, if there exists a reduction of A to B, then there exists a reduction from  $B^c$  to  $A^c$  (where  $L^c$  denotes the complement of a language L).
- 4. Define a notion of "unrestricted grammar" as follows:

$$G = (\Sigma, N, S_0, P)$$

where  $\Sigma$  and N are disjoint finite sets.  $S_0 \in N$ , and P is a finite set of "production rules" of the form  $\alpha | \longrightarrow \beta$ , where  $\alpha, \beta \in (\Sigma \cup N)^*$ . (This is very similar to the definition of context-free grammars, except that we do not require  $\alpha$  to be a letter from N.) For such a grammar G and strings  $\gamma, \delta \in (\Sigma \cup N)^*$  we say that  $\gamma | \stackrel{G}{\longrightarrow} \delta$  if there is a rule  $(\alpha | \longrightarrow \beta) \in P$ , and strings x, y, such that  $\gamma = x\alpha y$  and  $\delta = x\beta y$  (that is,  $\delta$  is obtained from  $\gamma$  by replacing the substring  $\alpha$  by the string  $\beta$ ). Furthermore, let  $\gamma | \stackrel{G}{\longrightarrow} \delta$  if there is a finite sequence  $\gamma_1, \ldots, \gamma_n$  such that for all  $i < n, \gamma_i | \stackrel{G}{\longrightarrow} \gamma_{i+1}$  and  $\gamma | \stackrel{G}{\longrightarrow} \gamma_1$  and  $\gamma_n | \stackrel{G}{\longrightarrow} \delta$ . Finally, let  $L(G) = \{w \in \Sigma^* : S_0 | \stackrel{G}{\longrightarrow} \gamma_i^G w\}$ .

- (a) Prove that for every such grammar G, the language L(G) is recursive.
- (b) **BONUS:** Argue convincingly why for every recursive language L there exists some unrestricted grammar G such that L = L(G).

**NOTE:** Part II of this homework, consisting of review exercises, will be on the website on Monday, Dec 3.