FINAL VERSION

1. For each of the following languages, find out if it is recursive or not. If it is, describe a total Turing machine that computes it. If not, explain why the existence of such a machine entails a contradiction.

 (a) \(\{0^{n_0}1^{n_1}0^{n_2} \ldots 1^{n_2k} : \text{for all } 0 \leq i \leq 2k, \; n_i \in \mathbb{N} \text{ and } n_0 \text{ is a solution to the equation} \; n_1 \cdot x^{n_2} + n_3 x^{n_4} + n_{2k-1} x^{n_{2k}} = 0 \} \)

 (b) \(\{ M : \epsilon \in L(M) \} \)

 (c) \(\{ M : |L(M)| < 100 \} \) (that is, \(M \) accepts less than 100 strings)

 (d) \(\{(M_1, M_2) : L(M_1) = L(M_2) \} \) (where \(M_1, M_2 \) are Turing machines)

2. (a) Prove that if one changes the definition of Turing machines to allow an infinite set of states \(Q \), then for every \(L \subseteq \{0\}^* \) there exists a total machine that computes it.

 (b) Prove that there exists a language \(L \subseteq \{0\}^* \) such that for every Turing machine (under the usual definition), \(L(T) \neq L \).

3. Prove that the family of all recursive languages is closed under the * operation. Namely, if \(L \) is recursive then so is \(L^* = \{w_1 \ldots w_n : n \in \mathbb{N} \text{ and for all } i, w_i \in L \} \).

4. Given a Turing machine \(T \), let \(\overline{T} \) denote the machine obtained by switching the ‘r’ and ‘s’ states of \(T \). That is, the transition function of \(\overline{T} \), \(\overline{\delta} \), is obtained by replacing each occurrence of \(t \) in the function \(\delta \) of \(T \) by an \(r \) and vice versa. Prove or refute each of the following claims:

 (a) For every \(T, L(\overline{T}) = \overline{L(T)} \) (where \(\overline{L} \) is the complement of a language \(L \)).

 (b) For every pair of machines \(T_1, T_2 \), if \(L(T_1) = L(T_2) \) then \(L(\overline{T_1}) = L(\overline{T_2}) \).

 (c) For every machine \(T \), if \(L(T) \) is recursive, then so is \(L(T) \).