CS381 Fall 2001 Homework 7 Prof Shai Ben-David

Due: Friday, November 30, 2001 — 9:05 am

**FINAL VERSION

- 1. For each of the following languages, find out if it is recursive or not. If it is, describe a total Turing machine that computes it. If not, explain why the existence of such a machine entails a contradiction.
 - (a) $\{0^{n_0}1^{n_1}0^{n_2}\dots 1^{n_{2k}} : \text{for all } 0 \leq i \leq 2k, \ n_i \in \mathbb{N} \text{ and } n_0 \text{ is a solution to the equation } n_1 \cdot x^{n_2} + n_3 x^{n_4} + n_{2k-1} x^{n_{2k}} = 0\}$
 - (b) $\{\#M : \epsilon \in L(M)\}$
 - (c) $\{\#M: |L(M)| < 100\}$ (that is, M accepts less than 100 strings)
 - (d) $\{(\#M_1, \#M_2) : L(M_1) = L(M_2)\}$ (where M_1, M_2 are Turing machines)
- 2. (a) Prove that if one changes the definition of Turing machines to allow an infinite set of states Q, then for every $L \subseteq \{0\}^*$ there exists a total machine that computes it.
 - (b) Prove that there exists a language $L \subseteq \{0\}^*$ such that for every Turing machine (under the usual definition), $L(T) \neq L$.
- 3. Prove that the family of all recursive languages is closed under the * operation. Namely, if L is recursive then so is $L^* = \{w_1 \dots w_n : n \in \mathbb{N} \text{ and for all } i, w_i \in L\}.$
- 4. Given a Turing machine T, let \overline{T} denote the machine obtained by switching the 'r' and 't' states of T. That is, the transition function of \overline{T} , $\overline{\delta}$, is obtained by replacing each occurrence of t in the function δ of T by an r and vice versa. Prove or refute each of the following claims:
 - (a) For every $T, L(\overline{T}) = \overline{L(T)}$ (where \overline{L} is the complement of a language L).
 - (b) For every pair of machines T_1, T_2 , if $L(T_1) = L(T_2)$ then $L(\overline{T}_1) = L(\overline{T}_2)$.
 - (c) For every machine T, if L(T) is recursive, then so is $L(\overline{T})$.