1. Describe an algorithm that on input -a DFA, M, outputs the answer to: "Is L(M) infinite?"

 (HINT: As a first step prove that L(M) is infinite if and only if \(L(M) \cap \{ w : n \leq |w| \leq 2n \} \neq \emptyset \) (where \(n \) is the number of states in M).

2. Construct Turing machines that compute the following languages:

 (a) \(\{ a^{2^n} : n \in \mathbb{N} \} \)

 (b) \(\{ a^n b^k c^{n+k} : n, k \in \mathbb{N} \} \)

 (c) \(\{ w \in \{0,1\}^* : |w| \text{ is even and there exists } i \leq \frac{|w|}{2} \text{ such that for all } j < i, a_j = a_{\frac{|w|}{2} + j} \text{ and } a_i = 1 \text{ and } a_{\frac{|w|}{2} + i} = 0 \} \) (where \(a_i \) is the \(i^{th} \) bit of \(w \)).