CS381 Fall 2001 - Homework 3

Prof Shai Ben-David

DUE: Friday, October 12, 9:00 am

NOTE: EVERY claim you make should be supported by an explanation or a proof

1. (i) Prove that the family of non-regular languages is closed under complementation (that is, if L is non-regular then so is $L^{c}=\{w: w \notin L\}$).
(ii) Show that the family of non-regular languages is not closed under the union operation. That is, prove that there are non-regular L_{1}, L_{2}, such that $L_{1} \cup L_{2}$ is regular
(iii) BONUS: Prove that there is a family W of infinitely many nonregular languages such that $\cup\{\mathrm{L}: \mathrm{L} \in \mathrm{W}\}$ is regular.
2. Prove that if L is a finite language then every DFA that computes L must have at least $\max \{|w|: w \in L\}$ many states.
3. For a word $w=0_{1} \ldots o_{n}$, let \bar{W} be the reverse word $\bar{W}=o_{n} \ldots o_{1}$. Prove that $\left\{\bar{w}: w \in\{0,1\}^{*}\right\}$ is not a regular language.
4. Prove that $L=\left\{0^{k} 1^{n} 0^{n}: k, n>0\right\} \cup\left\{1^{i} 0^{j}: i, j \geq 0\right\}$ satisfies the requirements of the pumping lemma (that is, "there exists some $n \in N$ such that for every $w \in L$ if $|w|>n$ then there are x, y, z such that: (i) $w=x y z$; (ii) $|x y|=n+1$; (iii) For every $i \in N, x y^{i} z \in L^{\prime \prime}$). This language is not regular, but we will not prove it here.
5. Prove that $\left\{w: \#_{0}(w)-\#_{1}(w) \equiv 1 \bmod 3\right\}$ is regular but, on the other hand, $\left\{w:\left|\#_{0}(w)-\#_{1}(w)\right| \equiv 1 \bmod 3\right\}$ is not regular. HINT : consider $0^{n} 1^{n+1}$ for sufficiently large n.
6. Prove that for every regular expression r there exists a regular expression t, such that: $L(r)=\{w: w \notin L(t)\}$.
7. Find a regular expression t over $\{0,1\}$ such that:

$$
\mathrm{L}(\mathrm{t})=\left\{\mathrm{w}: \mathrm{w} \notin \mathrm{~L}\left(((0+1)(0+1))^{*}\right)\right\} .
$$

8. For each of the following languages L (over $\Sigma=\{0, p, q\}$) find a regular expression r_{L} such that $L\left(r_{L}\right)=L$:
(i) $L=\{w$: if p occurs in w then w ends with a $q\}$
(ii) $L=\left\{w: \#_{p}(w)\right.$ is even $\}$
(iii) $L=\{w$: the next-to-last letter in w is $p\}$
9. For each of the following languages L describe the equivalence classes of R_{L} and determine the rank of R_{L} :
(i) $L=\left\{W \in\{0,1\}^{*}: w\right.$ contains exactly two $\left.1^{\prime} s.\right\}$
(ii) $L=\left\{0^{m} 1^{k} 0^{m+k}: m, k \in N\right\}$
(iii) $L=L(a b(a+b) * a b)$
