CS381 Fall 2001 – Homework 3 Prof Shai Ben-David

DUE: Friday, October 12, 9:00 am

NOTE: EVERY claim you make should be supported by an explanation or a proof

- (i) Prove that the family of <u>non</u>-regular languages is closed under complementation (that is, if L is non-regular then so is L^c= { w: w∉ L }).
 - (ii) Show that the family of non-regular languages is not closed under the union operation. That is, prove that there are non-regular L_1, L_2 , such that $L_1 \cup L_2$ is regular
 - (iii) **BONUS:** Prove that there is a family W of <u>infinitely many</u> non-regular languages such that $\cup \{L: L \in W\}$ is regular.
- 2. Prove that if L is a finite language then every DFA that computes L must have at least max $\{|w|: w \in L\}$ many states.
- 3. For a word $w = o_1 \dots o_n$, let \overline{w} be the reverse word $\overline{w} = o_n \dots o_1$. Prove that $\{\overline{ww}: w \in \{0,1\}^*\}$ is not a regular language.
- 4. Prove that L = {0^k1ⁿ0ⁿ:k,n>0}∪{1ⁱ0^j:i,j≥0} satisfies the requirements of the pumping lemma (that is, "there exists some n∈ N such that for every w∈ L if |w|>n then there are x,y,z such that:
 (i) w=xyz; (ii) |xy|=n+1; (iii) For every i∈ N, xyⁱz∈L"). This language is not regular, but we will not prove it here.

- 5. Prove that $\{w: \#_0(w) \#_1(w) \equiv 1 \mod 3\}$ is regular but, on the other hand, $\{w: |\#_0(w) \#_1(w)| \equiv 1 \mod 3\}$ is not regular. HINT: consider $0^n 1^{n+1}$ for sufficiently large n.
- 6. Prove that for every regular expression r there exists a regular expression t, such that: L(r) = {w: w∉ L(t)}.
- 7. Find a regular expression t over {0,1} such that:

$$L(t) = \{ w : w \notin L(((0+1)(0+1))^*) \}.$$

- 8. For each of the following languages L (over $\Sigma = \{o, p, q\}$) find a regular expression r_L such that $L(r_L) = L$:
 - (i) $L = \{w : \text{ if p occurs in w then w ends with a q} \}$
 - (ii) $L = \{ w : \#_p(w) \text{ is even} \}$
 - (iii) $L = \{ w : \text{ the next-to-last letter in } w \text{ is } p \}$
- 9. For each of the following languages L describe the equivalence classes of R_L and determine the rank of R_L :
 - (i) $L = \{ w \in \{0, 1\}^* : w \text{ contains exactly two 1's.} \}$
 - (ii) $L = \{0^m 1^k 0^{m+k} : m, k \in N \}$
 - (iii) L = L(ab(a+b)*ab)