CS381 Fall 2001 – Homework 2 Prof Shai Ben-David

DUE: Friday, 9/21, 9:00 am

NOTE: EVERY claim you make should be supported by an explanation or a proof

1. Prove that if L_1, L_2 are regular languages, then so is:

 $L_1 \setminus L_2 = \{ w \in L_1 : w \notin L_2 \}$

2. Given a DFA, $M = (Q, \Sigma, q_0, \delta, F)$ and $p, q \in Q$, let $L(M, p, q) = \{w : \hat{\delta}\}$

(p,w) = q } Prove/refute each of the following claims:

- (i) For every M,p,q as above and every $x, y \in \Sigma^*$, if $x \in L(M,p,q)$ and $y \in L(M,q,p)$ then $xy \in L(M,p,p)$
- (ii) For every M, p, q as above and every x, y, z∈Σ*, if
 yz∈L(M,p,q) then there exist some r∈Q such that for every
 x∈L(M,r,r) and every i∈ N, yxⁱz∈L(M,p,q).
- 3. Recall that a language is called "regular" if it is computable by some DFA.
 - Prove that any intersection of finitely many regular languages is a regular language.

- (ii) Prove that there exist a set W of regular languages so that the intersection of all languages in W is <u>not</u> regular.
- (iii) BONUS: find a set W of regular languages such that W is infinite and yet the intersection of all the languages in W is an infinite regular language.
- 4. Find a set W consisting of infinitely many languages over {0,1} so that:
 - (i) Each language in W is infinite
 - (ii) Each language in W is regular (i.e. computable by some DFA)
 - (iii) For every pair of languages $L_1, L_2 \in W$, if $L_1 \neq L_2$ then $L_1 \cap L_2 = \Phi$
- 5. Construct a DFA, M, such that L(M) = L(N) where N is the following NFA:

(here $\Sigma = \{a, b, c\}$)

6. Construct a NFA, M, over $\Sigma = \{1, 2, 3, 4, 5\}$ such that M has only 5 states and $L(M) = \{w = \sigma_1 \sigma_2 \dots \sigma_{|w|} : \text{ for all } i < j < |w|, \sigma_i \le \sigma_j\}$ (that is, the numbers that are the letters in w appear in increasing order).

CS381 Fall 2001 Prof Shai Ben-David