CS381 Fall 2001 - Homework 2

Prof Shai Ben-David

DUE: Friday, 9/ 21, 9:00 am

NOTE: EVERY claim you make should be supported by an explanation or a proof

1. Prove that if L_{1}, L_{2} are regular languages, then so is:
$\mathrm{L}_{1} \backslash \mathrm{~L}_{2}=\left\{\mathrm{w} \in \mathrm{L}_{1}: \mathrm{w} \notin \mathrm{L}_{2}\right\}$
2. Given a DFA, $M=\left(Q, \Sigma, q_{0}, \delta, F\right)$ and $p, q \in Q$, let $L(M, p, q)=\{w: \hat{\delta}$
$(p, w)=q\} \quad$ Prove/refute each of the following claims:
(i) For every M, p, q as above and every $x, y \in \Sigma^{*}$, if $x \in L(M, p, q)$ and $y \in L(M, q, p)$ then $x y \in L(M, p, p)$
(ii) For every M, p, q as above and every $x, y, z \in \Sigma^{*}$, if $y z \in L(M, p, q)$ then there exist some $r \in Q$ such that for every $x \in L(M, r, r)$ and every $i \in N, y x^{i} z \in L(M, p, q)$.
3. Recall that a language is called "regular" if it is computable by some DFA.
(i) Prove that any intersection of finitely many regular languages is a regular language.
(ii) Prove that there exist a set W of regular languages so that the intersection of all languages in W is not regular.
(iii) BONUS: find a set W of regular languages such that W is infinite and yet the intersection of all the languages in W is an infinite regular language.
4. Find a set W consisting of infinitely many languages over $\{0,1\}$ so that:
(i) Each language in W is infinite
(ii) Each language in W is regular (i.e. computable by some DFA)
(iii) For every pair of languages $L_{1}, L_{2} \in W$, if $L_{1} \neq L_{2}$ then $L_{1} \cap L_{2}=\Phi$
5. Construct a DFA, M, such that $L(M)=L(N)$ where N is the following NFA:

(here $\Sigma=\{a, b, c\}$)
6. Construct a NFA, M, over $\Sigma=\{1,2,3,4,5\}$ such that M has only 5 states and $L(M)=\left\{w=\sigma_{1} \sigma_{2} \ldots \sigma_{|w|}:\right.$ for all $\left.i<j<|w|, \sigma_{i} \leq \sigma_{j}\right\}$ (that is, the numbers that are the letters in w appear in increasing order).
