1. Prove that if L_1, L_2 are regular languages, then so is:

 $L_1 \setminus L_2 = \{ w \in L_1 : w \notin L_2 \}$

2. Given a DFA, $M = (Q, \Sigma, q_0, \delta, F)$ and $p, q \in Q$, let $L(M, p, q) = \{ w : \hat{\delta}(p, w) = q \}$.

 Prove/refute each of the following claims:

 (i) For every M, p, q as above and every $x, y \in \Sigma^*$, if $x \in L(M, p, q)$ and $y \in L(M, q, p)$ then $xy \in L(M, p, p)$

 (ii) For every M, p, q as above and every $x, y, z \in \Sigma^*$, if $yz \in L(M, p, q)$ then there exist some $r \in Q$ such that for every $x \in L(M, r, r)$ and every $i \in \mathbb{N}$, $yx^iz \in L(M, p, q)$.

3. Recall that a language is called “regular” if it is computable by some DFA.

 (i) Prove that any intersection of finitely many regular languages is a regular language.
(ii) Prove that there exist a set \(W \) of regular languages so that the
intersection of all languages in \(W \) is not regular.

(iii) **BONUS:** find a set \(W \) of regular languages such that \(W \) is infinite
and yet the intersection of all the languages in \(W \) is an infinite
regular language.

4. Find a set \(W \) consisting of infinitely many languages over \(\{0,1\} \) so that:
 (i) Each language in \(W \) is infinite
 (ii) Each language in \(W \) is regular (i.e. computable by some DFA)
 (iii) For every pair of languages \(L_1, L_2 \in W \), if \(L_1 \neq L_2 \) then \(L_1 \cap L_2 = \emptyset \)

5. Construct a DFA, \(M \), such that \(L(M) = L(N) \) where \(N \) is the following NFA:

![Diagram of NFA](image)

(Here \(\Sigma = \{a, b, c\} \))

6. Construct a NFA, \(M \), over \(\Sigma = \{1, 2, 3, 4, 5\} \) such that \(M \) has only 5 states
 and \(L(M) = \{w = \sigma_1 \sigma_2 \ldots \sigma_{|w|} : \text{for all } i < j < |w|, \ \sigma_i \leq \sigma_j \} \) (that is, the
 numbers that are the letters in \(w \) appear in increasing order).